polars.col#
Create an expression representing column(s) in a DataFrame.
col
is technically not a function, but it can be used like one.
See the class documentation below for examples and further documentation.
- class polars.functions.col.Col[source]
Create Polars column expressions.
Notes
An instance of this class is exported under the name
col
. It can be used as though it were a function by calling, for example,pl.col("foo")
. See the__call__()
method for further documentation.This helper class enables an alternative syntax for creating a column expression through attribute lookup. For example
col.foo
creates an expression equal tocol("foo")
. See the__getattr__()
method for further documentation.The function call syntax is considered the idiomatic way of constructing a column expression. The alternative attribute syntax can be useful for quick prototyping as it can save some keystrokes, but has drawbacks in both expressiveness and readability.
Examples
>>> from polars import col >>> df = pl.DataFrame( ... { ... "foo": [1, 2], ... "bar": [3, 4], ... } ... )
Create a new column expression using the standard syntax:
>>> df.with_columns(baz=(col("foo") * col("bar")) / 2) shape: (2, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ baz │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ f64 │ ╞═════╪═════╪═════╡ │ 1 ┆ 3 ┆ 1.5 │ │ 2 ┆ 4 ┆ 4.0 │ └─────┴─────┴─────┘
Use attribute lookup to create a new column expression:
>>> df.with_columns(baz=(col.foo + col.bar)) shape: (2, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ baz │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ 1 ┆ 3 ┆ 4 │ │ 2 ┆ 4 ┆ 6 │ └─────┴─────┴─────┘
Methods:
__call__
Create one or more expressions representing columns in a DataFrame.
__getattr__
Create a column expression using attribute syntax.
- __call__(
- name: str | PolarsDataType | PythonDataType | Iterable[str] | Iterable[PolarsDataType | PythonDataType],
- *more_names: str | PolarsDataType | PythonDataType,
Create one or more expressions representing columns in a DataFrame.
- Parameters:
- name
The name or datatype of the column(s) to represent. Accepts regular expression input; regular expressions should start with
^
and end with$
.- *more_names
Additional names or datatypes of columns to represent, specified as positional arguments.
See also
first
last
nth
Examples
Pass a single column name to represent that column.
>>> df = pl.DataFrame( ... { ... "ham": [1, 2], ... "hamburger": [11, 22], ... "foo": [2, 1], ... "bar": ["a", "b"], ... } ... ) >>> df.select(pl.col("foo")) shape: (2, 1) ┌─────┐ │ foo │ │ --- │ │ i64 │ ╞═════╡ │ 2 │ │ 1 │ └─────┘
Use dot syntax to save keystrokes for quick prototyping.
>>> from polars import col as c >>> df.select(c.foo + c.ham) shape: (2, 1) ┌─────┐ │ foo │ │ --- │ │ i64 │ ╞═════╡ │ 3 │ │ 3 │ └─────┘
Use the wildcard
*
to represent all columns.>>> df.select(pl.col("*")) shape: (2, 4) ┌─────┬───────────┬─────┬─────┐ │ ham ┆ hamburger ┆ foo ┆ bar │ │ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 ┆ str │ ╞═════╪═══════════╪═════╪═════╡ │ 1 ┆ 11 ┆ 2 ┆ a │ │ 2 ┆ 22 ┆ 1 ┆ b │ └─────┴───────────┴─────┴─────┘ >>> df.select(pl.col("*").exclude("ham")) shape: (2, 3) ┌───────────┬─────┬─────┐ │ hamburger ┆ foo ┆ bar │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞═══════════╪═════╪═════╡ │ 11 ┆ 2 ┆ a │ │ 22 ┆ 1 ┆ b │ └───────────┴─────┴─────┘
Regular expression input is supported.
>>> df.select(pl.col("^ham.*$")) shape: (2, 2) ┌─────┬───────────┐ │ ham ┆ hamburger │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═══════════╡ │ 1 ┆ 11 │ │ 2 ┆ 22 │ └─────┴───────────┘
Multiple columns can be represented by passing a list of names.
>>> df.select(pl.col(["hamburger", "foo"])) shape: (2, 2) ┌───────────┬─────┐ │ hamburger ┆ foo │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═══════════╪═════╡ │ 11 ┆ 2 │ │ 22 ┆ 1 │ └───────────┴─────┘
Or use positional arguments to represent multiple columns in the same way.
>>> df.select(pl.col("hamburger", "foo")) shape: (2, 2) ┌───────────┬─────┐ │ hamburger ┆ foo │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═══════════╪═════╡ │ 11 ┆ 2 │ │ 22 ┆ 1 │ └───────────┴─────┘
Easily select all columns that match a certain data type by passing that datatype.
>>> df.select(pl.col(pl.String)) shape: (2, 1) ┌─────┐ │ bar │ │ --- │ │ str │ ╞═════╡ │ a │ │ b │ └─────┘ >>> df.select(pl.col(pl.Int64, pl.Float64)) shape: (2, 3) ┌─────┬───────────┬─────┐ │ ham ┆ hamburger ┆ foo │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 │ ╞═════╪═══════════╪═════╡ │ 1 ┆ 11 ┆ 2 │ │ 2 ┆ 22 ┆ 1 │ └─────┴───────────┴─────┘
- __getattr__(name: str) Expr [source]
Create a column expression using attribute syntax.
Note that this syntax does not support passing data types or multiple column names.
- Parameters:
- name
The name of the column to represent.
Examples
>>> from polars import col as c >>> df = pl.DataFrame( ... { ... "foo": [1, 2], ... "bar": [3, 4], ... } ... ) >>> df.select(c.foo + c.bar) shape: (2, 1) ┌─────┐ │ foo │ │ --- │ │ i64 │ ╞═════╡ │ 4 │ │ 6 │ └─────┘