polars.cov#
- polars.cov(a: IntoExpr, b: IntoExpr, *, ddof: int = 1, eager: bool = False) Expr | Series [source]#
Compute the covariance between two columns/ expressions.
- Parameters:
- a
Column name or Expression.
- b
Column name or Expression.
- ddof
“Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where N represents the number of elements. By default ddof is 1.
- eager
Evaluate immediately and return a
Series
; this requires that at least one of the given arguments is aSeries
. If set toFalse
(default), return an expression instead.
Examples
>>> df = pl.DataFrame( ... { ... "a": [1, 8, 3], ... "b": [4, 5, 2], ... "c": ["foo", "bar", "foo"], ... }, ... )
>>> df.select( ... x=pl.cov("a", "b"), ... y=pl.cov("a", "b", ddof=2), ... ) shape: (1, 2) ┌─────┬─────┐ │ x ┆ y │ │ --- ┆ --- │ │ f64 ┆ f64 │ ╞═════╪═════╡ │ 3.0 ┆ 6.0 │ └─────┴─────┘
Eager evaluation:
>>> s1 = pl.Series("a", [1, 8, 3]) >>> s2 = pl.Series("b", [4, 5, 2]) >>> pl.cov(s1, s2, eager=True) shape: (1,) Series: 'a' [f64] [ 3.0 ]