polars.LazyFrame.update#

LazyFrame.update(
other: LazyFrame,
on: str | Sequence[str] | None = None,
how: Literal['left', 'inner', 'full'] = 'left',
*,
left_on: str | Sequence[str] | None = None,
right_on: str | Sequence[str] | None = None,
include_nulls: bool = False,
) LazyFrame[source]#

Update the values in this LazyFrame with the values in other.

Warning

This functionality is considered unstable. It may be changed at any point without it being considered a breaking change.

Parameters:
other

LazyFrame that will be used to update the values

on

Column names that will be joined on. If set to None (default), the implicit row index of each frame is used as a join key.

how{‘left’, ‘inner’, ‘full’}
  • ‘left’ will keep all rows from the left table; rows may be duplicated if multiple rows in the right frame match the left row’s key.

  • ‘inner’ keeps only those rows where the key exists in both frames.

  • ‘full’ will update existing rows where the key matches while also adding any new rows contained in the given frame.

left_on

Join column(s) of the left DataFrame.

right_on

Join column(s) of the right DataFrame.

include_nulls

Overwrite values in the left frame with null values from the right frame. If set to False (default), null values in the right frame are ignored.

Notes

This is syntactic sugar for a left/inner join, with an optional coalesce when include_nulls = False.

Examples

>>> lf = pl.LazyFrame(
...     {
...         "A": [1, 2, 3, 4],
...         "B": [400, 500, 600, 700],
...     }
... )
>>> lf.collect()
shape: (4, 2)
┌─────┬─────┐
│ A   ┆ B   │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═════╪═════╡
│ 1   ┆ 400 │
│ 2   ┆ 500 │
│ 3   ┆ 600 │
│ 4   ┆ 700 │
└─────┴─────┘
>>> new_lf = pl.LazyFrame(
...     {
...         "B": [-66, None, -99],
...         "C": [5, 3, 1],
...     }
... )

Update df values with the non-null values in new_df, by row index:

>>> lf.update(new_lf).collect()
shape: (4, 2)
┌─────┬─────┐
│ A   ┆ B   │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═════╪═════╡
│ 1   ┆ -66 │
│ 2   ┆ 500 │
│ 3   ┆ -99 │
│ 4   ┆ 700 │
└─────┴─────┘

Update df values with the non-null values in new_df, by row index, but only keeping those rows that are common to both frames:

>>> lf.update(new_lf, how="inner").collect()
shape: (3, 2)
┌─────┬─────┐
│ A   ┆ B   │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═════╪═════╡
│ 1   ┆ -66 │
│ 2   ┆ 500 │
│ 3   ┆ -99 │
└─────┴─────┘

Update df values with the non-null values in new_df, using a full outer join strategy that defines explicit join columns in each frame:

>>> lf.update(new_lf, left_on=["A"], right_on=["C"], how="full").collect()
shape: (5, 2)
┌─────┬─────┐
│ A   ┆ B   │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═════╪═════╡
│ 1   ┆ -99 │
│ 2   ┆ 500 │
│ 3   ┆ 600 │
│ 4   ┆ 700 │
│ 5   ┆ -66 │
└─────┴─────┘

Update df values including null values in new_df, using a full outer join strategy that defines explicit join columns in each frame:

>>> lf.update(
...     new_lf, left_on="A", right_on="C", how="full", include_nulls=True
... ).collect()
shape: (5, 2)
┌─────┬──────┐
│ A   ┆ B    │
│ --- ┆ ---  │
│ i64 ┆ i64  │
╞═════╪══════╡
│ 1   ┆ -99  │
│ 2   ┆ 500  │
│ 3   ┆ null │
│ 4   ┆ 700  │
│ 5   ┆ -66  │
└─────┴──────┘