polars.LazyFrame.collect#

LazyFrame.collect(
*,
type_coercion: bool = True,
predicate_pushdown: bool = True,
projection_pushdown: bool = True,
simplify_expression: bool = True,
slice_pushdown: bool = True,
comm_subplan_elim: bool = True,
comm_subexpr_elim: bool = True,
cluster_with_columns: bool = True,
collapse_joins: bool = True,
no_optimization: bool = False,
streaming: bool = False,
engine: EngineType = 'cpu',
background: bool = False,
_eager: bool = False,
**_kwargs: Any,
) DataFrame | InProcessQuery[source]#

Materialize this LazyFrame into a DataFrame.

By default, all query optimizations are enabled. Individual optimizations may be disabled by setting the corresponding parameter to False.

Parameters:
type_coercion

Do type coercion optimization.

predicate_pushdown

Do predicate pushdown optimization.

projection_pushdown

Do projection pushdown optimization.

simplify_expression

Run simplify expressions optimization.

slice_pushdown

Slice pushdown optimization.

comm_subplan_elim

Will try to cache branching subplans that occur on self-joins or unions.

comm_subexpr_elim

Common subexpressions will be cached and reused.

cluster_with_columns

Combine sequential independent calls to with_columns

collapse_joins

Collapse a join and filters into a faster join

no_optimization

Turn off (certain) optimizations.

streaming

Process the query in batches to handle larger-than-memory data. If set to False (default), the entire query is processed in a single batch.

Warning

Streaming mode is considered unstable. It may be changed at any point without it being considered a breaking change.

Note

Use explain() to see if Polars can process the query in streaming mode.

engine

Select the engine used to process the query, optional. If set to "cpu" (default), the query is run using the polars CPU engine. If set to "gpu", the GPU engine is used. Fine-grained control over the GPU engine, for example which device to use on a system with multiple devices, is possible by providing a GPUEngine object with configuration options.

Note

GPU mode is considered unstable. Not all queries will run successfully on the GPU, however, they should fall back transparently to the default engine if execution is not supported.

Running with POLARS_VERBOSE=1 will provide information if a query falls back (and why).

Note

The GPU engine does not support streaming, or running in the background. If either are enabled, then GPU execution is switched off.

background

Run the query in the background and get a handle to the query. This handle can be used to fetch the result or cancel the query.

Warning

Background mode is considered unstable. It may be changed at any point without it being considered a breaking change.

Returns:
DataFrame

See also

explain

Print the query plan that is evaluated with collect.

profile

Collect the LazyFrame and time each node in the computation graph.

polars.collect_all

Collect multiple LazyFrames at the same time.

polars.Config.set_streaming_chunk_size

Set the size of streaming batches.

Examples

>>> lf = pl.LazyFrame(
...     {
...         "a": ["a", "b", "a", "b", "b", "c"],
...         "b": [1, 2, 3, 4, 5, 6],
...         "c": [6, 5, 4, 3, 2, 1],
...     }
... )
>>> lf.group_by("a").agg(pl.all().sum()).collect()  
shape: (3, 3)
┌─────┬─────┬─────┐
│ a   ┆ b   ┆ c   │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 │
╞═════╪═════╪═════╡
│ a   ┆ 4   ┆ 10  │
│ b   ┆ 11  ┆ 10  │
│ c   ┆ 6   ┆ 1   │
└─────┴─────┴─────┘

Collect in streaming mode

>>> lf.group_by("a").agg(pl.all().sum()).collect(
...     streaming=True
... )  
shape: (3, 3)
┌─────┬─────┬─────┐
│ a   ┆ b   ┆ c   │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 │
╞═════╪═════╪═════╡
│ a   ┆ 4   ┆ 10  │
│ b   ┆ 11  ┆ 10  │
│ c   ┆ 6   ┆ 1   │
└─────┴─────┴─────┘

Collect in GPU mode

>>> lf.group_by("a").agg(pl.all().sum()).collect(engine="gpu")  
shape: (3, 3)
┌─────┬─────┬─────┐
│ a   ┆ b   ┆ c   │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 │
╞═════╪═════╪═════╡
│ b   ┆ 11  ┆ 10  │
│ a   ┆ 4   ┆ 10  │
│ c   ┆ 6   ┆ 1   │
└─────┴─────┴─────┘

With control over the device used

>>> lf.group_by("a").agg(pl.all().sum()).collect(
...     engine=pl.GPUEngine(device=1)
... )  
shape: (3, 3)
┌─────┬─────┬─────┐
│ a   ┆ b   ┆ c   │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 │
╞═════╪═════╪═════╡
│ b   ┆ 11  ┆ 10  │
│ a   ┆ 4   ┆ 10  │
│ c   ┆ 6   ┆ 1   │
└─────┴─────┴─────┘