polars.Expr.drop_nulls#

Expr.drop_nulls() Expr[source]#

Drop all null values.

The original order of the remaining elements is preserved.

See also

drop_nans

Notes

A null value is not the same as a NaN value. To drop NaN values, use drop_nans().

Examples

>>> df = pl.DataFrame({"a": [1.0, None, 3.0, float("nan")]})
>>> df.select(pl.col("a").drop_nulls())
shape: (3, 1)
┌─────┐
│ a   │
│ --- │
│ f64 │
╞═════╡
│ 1.0 │
│ 3.0 │
│ NaN │
└─────┘