polars.Expr.filter#

Expr.filter(
*predicates: IntoExprColumn | Iterable[IntoExprColumn],
**constraints: Any,
) Expr[source]#

Filter the expression based on one or more predicate expressions.

The original order of the remaining elements is preserved.

Elements where the filter does not evaluate to True are discarded, including nulls.

Mostly useful in an aggregation context. If you want to filter on a DataFrame level, use LazyFrame.filter.

Parameters:
predicates

Expression(s) that evaluates to a boolean Series.

constraints

Column filters; use name = value to filter columns by the supplied value. Each constraint will behave the same as pl.col(name).eq(value), and will be implicitly joined with the other filter conditions using &.

Examples

>>> df = pl.DataFrame(
...     {
...         "group_col": ["g1", "g1", "g2"],
...         "b": [1, 2, 3],
...     }
... )
>>> df.group_by("group_col").agg(
...     lt=pl.col("b").filter(pl.col("b") < 2).sum(),
...     gte=pl.col("b").filter(pl.col("b") >= 2).sum(),
... ).sort("group_col")
shape: (2, 3)
┌───────────┬─────┬─────┐
│ group_col ┆ lt  ┆ gte │
│ ---       ┆ --- ┆ --- │
│ str       ┆ i64 ┆ i64 │
╞═══════════╪═════╪═════╡
│ g1        ┆ 1   ┆ 2   │
│ g2        ┆ 0   ┆ 3   │
└───────────┴─────┴─────┘

Filter expressions can also take constraints as keyword arguments.

>>> import polars.selectors as cs
>>> df = pl.DataFrame(
...     {
...         "key": ["a", "a", "a", "a", "b", "b", "b", "b", "b"],
...         "n": [1, 2, 2, 3, 1, 3, 3, 2, 3],
...     },
... )
>>> df.group_by("key").agg(
...     n_1=pl.col("n").filter(n=1).sum(),
...     n_2=pl.col("n").filter(n=2).sum(),
...     n_3=pl.col("n").filter(n=3).sum(),
... ).sort(by="key")
shape: (2, 4)
┌─────┬─────┬─────┬─────┐
│ key ┆ n_1 ┆ n_2 ┆ n_3 │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 ┆ i64 │
╞═════╪═════╪═════╪═════╡
│ a   ┆ 1   ┆ 4   ┆ 3   │
│ b   ┆ 1   ┆ 2   ┆ 9   │
└─────┴─────┴─────┴─────┘