polars.Expr.kurtosis#
- Expr.kurtosis(*, fisher: bool = True, bias: bool = True) Expr [source]#
Compute the kurtosis (Fisher or Pearson) of a dataset.
Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution. If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators.
See scipy.stats for more information
- Parameters:
- fisherbool, optional
If True, Fisher’s definition is used (normal ==> 0.0). If False, Pearson’s definition is used (normal ==> 3.0).
- biasbool, optional
If False, the calculations are corrected for statistical bias.
Examples
>>> df = pl.DataFrame({"a": [1, 2, 3, 2, 1]}) >>> df.select(pl.col("a").kurtosis()) shape: (1, 1) ┌───────────┐ │ a │ │ --- │ │ f64 │ ╞═══════════╡ │ -1.153061 │ └───────────┘