polars.DataFrame.to_dummies#

DataFrame.to_dummies(
columns: ColumnNameOrSelector | Sequence[ColumnNameOrSelector] | None = None,
*,
separator: str = '_',
drop_first: bool = False,
) DataFrame[source]#

Convert categorical variables into dummy/indicator variables.

Parameters:
columns

Column name(s) or selector(s) that should be converted to dummy variables. If set to None (default), convert all columns.

separator

Separator/delimiter used when generating column names.

drop_first

Remove the first category from the variables being encoded.

Examples

>>> df = pl.DataFrame(
...     {
...         "foo": [1, 2],
...         "bar": [3, 4],
...         "ham": ["a", "b"],
...     }
... )
>>> df.to_dummies()
shape: (2, 6)
┌───────┬───────┬───────┬───────┬───────┬───────┐
│ foo_1 ┆ foo_2 ┆ bar_3 ┆ bar_4 ┆ ham_a ┆ ham_b │
│ ---   ┆ ---   ┆ ---   ┆ ---   ┆ ---   ┆ ---   │
│ u8    ┆ u8    ┆ u8    ┆ u8    ┆ u8    ┆ u8    │
╞═══════╪═══════╪═══════╪═══════╪═══════╪═══════╡
│ 1     ┆ 0     ┆ 1     ┆ 0     ┆ 1     ┆ 0     │
│ 0     ┆ 1     ┆ 0     ┆ 1     ┆ 0     ┆ 1     │
└───────┴───────┴───────┴───────┴───────┴───────┘
>>> df.to_dummies(drop_first=True)
shape: (2, 3)
┌───────┬───────┬───────┐
│ foo_2 ┆ bar_4 ┆ ham_b │
│ ---   ┆ ---   ┆ ---   │
│ u8    ┆ u8    ┆ u8    │
╞═══════╪═══════╪═══════╡
│ 0     ┆ 0     ┆ 0     │
│ 1     ┆ 1     ┆ 1     │
└───────┴───────┴───────┘
>>> import polars.selectors as cs
>>> df.to_dummies(cs.integer(), separator=":")
shape: (2, 5)
┌───────┬───────┬───────┬───────┬─────┐
│ foo:1 ┆ foo:2 ┆ bar:3 ┆ bar:4 ┆ ham │
│ ---   ┆ ---   ┆ ---   ┆ ---   ┆ --- │
│ u8    ┆ u8    ┆ u8    ┆ u8    ┆ str │
╞═══════╪═══════╪═══════╪═══════╪═════╡
│ 1     ┆ 0     ┆ 1     ┆ 0     ┆ a   │
│ 0     ┆ 1     ┆ 0     ┆ 1     ┆ b   │
└───────┴───────┴───────┴───────┴─────┘
>>> df.to_dummies(cs.integer(), drop_first=True, separator=":")
shape: (2, 3)
┌───────┬───────┬─────┐
│ foo:2 ┆ bar:4 ┆ ham │
│ ---   ┆ ---   ┆ --- │
│ u8    ┆ u8    ┆ str │
╞═══════╪═══════╪═════╡
│ 0     ┆ 0     ┆ a   │
│ 1     ┆ 1     ┆ b   │
└───────┴───────┴─────┘