polars.Expr.reshape#
- Expr.reshape(dimensions: tuple[int, ...]) Expr [source]#
Reshape this Expr to a flat column or an Array column.
- Parameters:
- dimensions
Tuple of the dimension sizes. If a -1 is used in any of the dimensions, that dimension is inferred.
- Returns:
- Expr
If a single dimension is given, results in an expression of the original data type. If a multiple dimensions are given, results in an expression of data type
Array
with shapedimensions
.
See also
Expr.list.explode
Explode a list column.
Examples
>>> df = pl.DataFrame({"foo": [1, 2, 3, 4, 5, 6, 7, 8, 9]}) >>> square = df.select(pl.col("foo").reshape((3, 3))) >>> square shape: (3, 1) ┌───────────────┐ │ foo │ │ --- │ │ array[i64, 3] │ ╞═══════════════╡ │ [1, 2, 3] │ │ [4, 5, 6] │ │ [7, 8, 9] │ └───────────────┘ >>> square.select(pl.col("foo").reshape((9,))) shape: (9, 1) ┌─────┐ │ foo │ │ --- │ │ i64 │ ╞═════╡ │ 1 │ │ 2 │ │ 3 │ │ 4 │ │ 5 │ │ 6 │ │ 7 │ │ 8 │ │ 9 │ └─────┘