polars.when#
- polars.when(
- *predicates: IntoExprColumn | Iterable[IntoExprColumn] | bool,
- **constraints: Any,
Start a
when-then-otherwise
expression.Always initiated by a
pl.when().then()
., and optionally followed by chaining one or more.when().then()
statements.An optional
.otherwise()
can be appended at the end. If not declared, a default of.otherwise(None)
is used.Similar to
coalesce()
, the value from the first condition that evaluates to True will be picked.If all conditions are False, the
otherwise
value is picked.- Parameters:
- predicates
Condition(s) that must be met in order to apply the subsequent statement. Accepts one or more boolean expressions, which are implicitly combined with
&
.- constraints
Apply conditions as
col_name = value
keyword arguments that are treated as equality matches, such asx = 123
. As with the predicates parameter, multiple conditions are implicitly combined using&
.
Warning
Polars computes all expressions passed to
when-then-otherwise
in parallel and filters afterwards. This means each expression must be valid on its own, regardless of the conditions in thewhen-then-otherwise
chain.Notes
String inputs e.g.
when("string")
,then("string")
orotherwise("string")
are parsed as column names.lit()
can be used to create string values.Examples
Below we add a column with the value 1, where column “foo” > 2 and the value 1 + column “bar” where it isn’t.
>>> df = pl.DataFrame({"foo": [1, 3, 4], "bar": [3, 4, 0]}) >>> df.with_columns( ... pl.when(pl.col.foo > 2).then(1).otherwise(1 + pl.col.bar).alias("val") ... ) shape: (3, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ val │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ 1 ┆ 3 ┆ 4 │ │ 3 ┆ 4 ┆ 1 │ │ 4 ┆ 0 ┆ 1 │ └─────┴─────┴─────┘
Note that
when-then
always executes all expressions.The results are folded left to right, picking the
then
value from the firstwhen
condition that is True.If no
when
condition is True theotherwise
value is picked.>>> df.with_columns( ... when = pl.col.foo > 2, ... then = 1, ... otherwise = 1 + pl.col.bar ... ).with_columns( ... pl.when("when").then("then").otherwise("otherwise").alias("val") ... ) shape: (3, 6) ┌─────┬─────┬───────┬──────┬───────────┬─────┐ │ foo ┆ bar ┆ when ┆ then ┆ otherwise ┆ val │ │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ bool ┆ i32 ┆ i64 ┆ i64 │ ╞═════╪═════╪═══════╪══════╪═══════════╪═════╡ │ 1 ┆ 3 ┆ false ┆ 1 ┆ 4 ┆ 4 │ │ 3 ┆ 4 ┆ true ┆ 1 ┆ 5 ┆ 1 │ │ 4 ┆ 0 ┆ true ┆ 1 ┆ 1 ┆ 1 │ └─────┴─────┴───────┴──────┴───────────┴─────┘
Note that in regular Polars usage, a single string is parsed as a column name.
>>> df.with_columns( ... when = pl.col.foo > 2, ... then = "foo", ... otherwise = "bar" ... ) shape: (3, 5) ┌─────┬─────┬───────┬──────┬───────────┐ │ foo ┆ bar ┆ when ┆ then ┆ otherwise │ │ --- ┆ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ bool ┆ i64 ┆ i64 │ ╞═════╪═════╪═══════╪══════╪═══════════╡ │ 1 ┆ 3 ┆ false ┆ 1 ┆ 3 │ │ 3 ┆ 4 ┆ true ┆ 3 ┆ 4 │ │ 4 ┆ 0 ┆ true ┆ 4 ┆ 0 │ └─────┴─────┴───────┴──────┴───────────┘
For consistency,
when-then
behaves in the same way.>>> df.with_columns( ... pl.when(pl.col.foo > 2).then("foo").otherwise("bar").alias("val") ... ) shape: (3, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ val │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ 1 ┆ 3 ┆ 3 │ │ 3 ┆ 4 ┆ 3 │ │ 4 ┆ 0 ┆ 4 │ └─────┴─────┴─────┘
lit()
can be used to create string values.>>> df.with_columns( ... pl.when(pl.col.foo > 2) ... .then(pl.lit("foo")) ... .otherwise(pl.lit("bar")) ... .alias("val") ... ) shape: (3, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ val │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞═════╪═════╪═════╡ │ 1 ┆ 3 ┆ bar │ │ 3 ┆ 4 ┆ foo │ │ 4 ┆ 0 ┆ foo │ └─────┴─────┴─────┘
Multiple
when-then
statements can be chained.>>> df.with_columns( ... pl.when(pl.col.foo > 2) ... .then(1) ... .when(pl.col.bar > 2) ... .then(4) ... .otherwise(-1) ... .alias("val") ... ) shape: (3, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ val │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i32 │ ╞═════╪═════╪═════╡ │ 1 ┆ 3 ┆ 4 │ │ 3 ┆ 4 ┆ 1 │ │ 4 ┆ 0 ┆ 1 │ └─────┴─────┴─────┘
In the case of
foo=3
andbar=4
, both conditions are True but the first value (i.e. 1) is picked.>>> df.with_columns( ... when1 = pl.col.foo > 2, ... then1 = 1, ... when2 = pl.col.bar > 2, ... then2 = 4, ... otherwise = -1 ... ) shape: (3, 7) ┌─────┬─────┬───────┬───────┬───────┬───────┬───────────┐ │ foo ┆ bar ┆ when1 ┆ then1 ┆ when2 ┆ then2 ┆ otherwise │ │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ bool ┆ i32 ┆ bool ┆ i32 ┆ i32 │ ╞═════╪═════╪═══════╪═══════╪═══════╪═══════╪═══════════╡ │ 1 ┆ 3 ┆ false ┆ 1 ┆ true ┆ 4 ┆ -1 │ │ 3 ┆ 4 ┆ true ┆ 1 ┆ true ┆ 4 ┆ -1 │ │ 4 ┆ 0 ┆ true ┆ 1 ┆ false ┆ 4 ┆ -1 │ └─────┴─────┴───────┴───────┴───────┴───────┴───────────┘
The
otherwise
statement is optional and defaults to.otherwise(None)
if not given.This idiom is commonly used to null out values.
>>> df.with_columns(pl.when(pl.col.foo == 3).then("bar")) shape: (3, 2) ┌─────┬──────┐ │ foo ┆ bar │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪══════╡ │ 1 ┆ null │ │ 3 ┆ 4 │ │ 4 ┆ null │ └─────┴──────┘
when
accepts keyword arguments as shorthand for equality conditions.>>> df.with_columns(pl.when(foo=3).then("bar")) shape: (3, 2) ┌─────┬──────┐ │ foo ┆ bar │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪══════╡ │ 1 ┆ null │ │ 3 ┆ 4 │ │ 4 ┆ null │ └─────┴──────┘
Multiple predicates passed to
when
are combined with&
>>> df.with_columns( ... pl.when(pl.col.foo > 2, pl.col.bar < 3) # when((pred1) & (pred2)) ... .then(pl.lit("Yes")) ... .otherwise(pl.lit("No")) ... .alias("val") ... ) shape: (3, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ val │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞═════╪═════╪═════╡ │ 1 ┆ 3 ┆ No │ │ 3 ┆ 4 ┆ No │ │ 4 ┆ 0 ┆ Yes │ └─────┴─────┴─────┘
It could also be thought of as an implicit
all_horizontal()
being present.>>> df.with_columns( ... when = pl.all_horizontal(pl.col.foo > 2, pl.col.bar < 3) ... ) shape: (3, 3) ┌─────┬─────┬───────┐ │ foo ┆ bar ┆ when │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ bool │ ╞═════╪═════╪═══════╡ │ 1 ┆ 3 ┆ false │ │ 3 ┆ 4 ┆ false │ │ 4 ┆ 0 ┆ true │ └─────┴─────┴───────┘
Structs can be used as a way to return multiple values.
Here we swap the “foo” and “bar” values when “foo” is greater than 2.
>>> df.with_columns( ... pl.when(pl.col.foo > 2) ... .then(pl.struct(foo="bar", bar="foo")) ... .otherwise(pl.struct("foo", "bar")) ... .struct.unnest() ... ) shape: (3, 2) ┌─────┬─────┐ │ foo ┆ bar │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 3 │ │ 4 ┆ 3 │ │ 0 ┆ 4 │ └─────┴─────┘
The struct fields are given the same name as the target columns, which are then unnested.
>>> df.with_columns( ... when = pl.col.foo > 2, ... then = pl.struct(foo="bar", bar="foo"), ... otherwise = pl.struct("foo", "bar") ... ) shape: (3, 5) ┌─────┬─────┬───────┬───────────┬───────────┐ │ foo ┆ bar ┆ when ┆ then ┆ otherwise │ │ --- ┆ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ bool ┆ struct[2] ┆ struct[2] │ ╞═════╪═════╪═══════╪═══════════╪═══════════╡ │ 1 ┆ 3 ┆ false ┆ {3,1} ┆ {1,3} │ │ 3 ┆ 4 ┆ true ┆ {4,3} ┆ {3,4} │ │ 4 ┆ 0 ┆ true ┆ {0,4} ┆ {4,0} │ └─────┴─────┴───────┴───────────┴───────────┘
The output name of a
when-then
expression comes from the firstthen
branch.Here we try to set all columns to 0 if any column contains a value less than 2.
>>> df.with_columns( ... pl.when(pl.any_horizontal(pl.all() < 2)) ... .then(0) ... .otherwise(pl.all()) ... ) # ComputeError: the name 'literal' passed to `LazyFrame.with_columns` is duplicate
name.keep()
could be used to give preference to the column expression.>>> df.with_columns( ... pl.when(pl.any_horizontal(pl.all() < 2)) ... .then(0) ... .otherwise(pl.all()) ... .name.keep() ... ) shape: (3, 2) ┌─────┬─────┐ │ foo ┆ bar │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 0 ┆ 0 │ │ 3 ┆ 4 │ │ 0 ┆ 0 │ └─────┴─────┘
The logic could also be changed to move the column expression inside
then
.>>> df.with_columns( ... pl.when(pl.any_horizontal(pl.all() < 2).not_()) ... .then(pl.all()) ... .otherwise(0) ... ) shape: (3, 2) ┌─────┬─────┐ │ foo ┆ bar │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 0 ┆ 0 │ │ 3 ┆ 4 │ │ 0 ┆ 0 │ └─────┴─────┘