polars.Expr.and_#
- Expr.and_(*others: Any) Expr[source]#
Method equivalent of bitwise “and” operator
expr & other & ....This has the effect of combining logical boolean expressions, but operates bitwise on integers.
- Parameters:
- *others
One or more integer or boolean expressions to evaluate/combine.
Examples
>>> df = pl.DataFrame( ... data={ ... "x": [5, 6, 7, 4, 8], ... "y": [1.5, 2.5, 1.0, 4.0, -5.75], ... "z": [-9, 2, -1, 4, 8], ... } ... )
Combine logical “and” conditions:
>>> df.select( ... (pl.col("x") >= pl.col("z")) ... .and_( ... pl.col("y") >= pl.col("z"), ... pl.col("y") == pl.col("y"), ... pl.col("z") <= pl.col("x"), ... pl.col("y") != pl.col("x"), ... ) ... .alias("all") ... ) shape: (5, 1) ┌───────┐ │ all │ │ --- │ │ bool │ ╞═══════╡ │ true │ │ true │ │ true │ │ false │ │ false │ └───────┘
Bitwise “and” operation on integer columns:
>>> df.select("x", "z", x_and_z=pl.col("x").and_(pl.col("z"))) shape: (5, 3) ┌─────┬─────┬─────────┐ │ x ┆ z ┆ x_and_z │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════════╡ │ 5 ┆ -9 ┆ 5 │ │ 6 ┆ 2 ┆ 2 │ │ 7 ┆ -1 ┆ 7 │ │ 4 ┆ 4 ┆ 4 │ │ 8 ┆ 8 ┆ 8 │ └─────┴─────┴─────────┘