polars_ops/chunked_array/
scatter.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
use arrow::array::{Array, PrimitiveArray};
use polars_core::prelude::*;
use polars_core::series::IsSorted;
use polars_core::utils::arrow::bitmap::MutableBitmap;
use polars_core::utils::arrow::types::NativeType;
use polars_utils::index::check_bounds;

pub trait ChunkedSet<T: Copy> {
    /// Invariant for implementations: if the scatter() fails, typically because
    /// of bad indexes, then self should remain unmodified.
    fn scatter<V>(self, idx: &[IdxSize], values: V) -> PolarsResult<Series>
    where
        V: IntoIterator<Item = Option<T>>;
}
fn check_sorted(idx: &[IdxSize]) -> PolarsResult<()> {
    if idx.is_empty() {
        return Ok(());
    }
    let mut sorted = true;
    let mut previous = idx[0];
    for &i in &idx[1..] {
        if i < previous {
            // we will not break here as that prevents SIMD
            sorted = false;
        }
        previous = i;
    }
    polars_ensure!(sorted, ComputeError: "set indices must be sorted");
    Ok(())
}

trait PolarsOpsNumericType: PolarsNumericType {}

impl PolarsOpsNumericType for UInt8Type {}
impl PolarsOpsNumericType for UInt16Type {}
impl PolarsOpsNumericType for UInt32Type {}
impl PolarsOpsNumericType for UInt64Type {}
impl PolarsOpsNumericType for Int8Type {}
impl PolarsOpsNumericType for Int16Type {}
impl PolarsOpsNumericType for Int32Type {}
impl PolarsOpsNumericType for Int64Type {}
#[cfg(feature = "dtype-i128")]
impl PolarsOpsNumericType for Int128Type {}
impl PolarsOpsNumericType for Float32Type {}
impl PolarsOpsNumericType for Float64Type {}

unsafe fn scatter_impl<V, T: NativeType>(
    new_values_slice: &mut [T],
    set_values: V,
    arr: &mut PrimitiveArray<T>,
    idx: &[IdxSize],
    len: usize,
) where
    V: IntoIterator<Item = Option<T>>,
{
    let mut values_iter = set_values.into_iter();

    if arr.null_count() > 0 {
        arr.apply_validity(|v| {
            let mut mut_validity = v.make_mut();

            for (idx, val) in idx.iter().zip(&mut values_iter) {
                match val {
                    Some(value) => {
                        mut_validity.set_unchecked(*idx as usize, true);
                        *new_values_slice.get_unchecked_mut(*idx as usize) = value
                    },
                    None => mut_validity.set_unchecked(*idx as usize, false),
                }
            }
            mut_validity.into()
        })
    } else {
        let mut null_idx = vec![];
        for (idx, val) in idx.iter().zip(values_iter) {
            match val {
                Some(value) => *new_values_slice.get_unchecked_mut(*idx as usize) = value,
                None => {
                    null_idx.push(*idx);
                },
            }
        }
        // only make a validity bitmap when null values are set
        if !null_idx.is_empty() {
            let mut validity = MutableBitmap::with_capacity(len);
            validity.extend_constant(len, true);
            for idx in null_idx {
                validity.set_unchecked(idx as usize, false)
            }
            arr.set_validity(Some(validity.into()))
        }
    }
}

impl<T: PolarsOpsNumericType> ChunkedSet<T::Native> for &mut ChunkedArray<T>
where
    ChunkedArray<T>: IntoSeries,
{
    fn scatter<V>(self, idx: &[IdxSize], values: V) -> PolarsResult<Series>
    where
        V: IntoIterator<Item = Option<T::Native>>,
    {
        check_bounds(idx, self.len() as IdxSize)?;
        let mut ca = std::mem::take(self).rechunk();

        // SAFETY:
        // we will not modify the length
        // and we unset the sorted flag.
        ca.set_sorted_flag(IsSorted::Not);
        let arr = unsafe { ca.downcast_iter_mut() }.next().unwrap();
        let len = arr.len();

        match arr.get_mut_values() {
            Some(current_values) => {
                let ptr = current_values.as_mut_ptr();

                // reborrow because the bck does not allow it
                let current_values = unsafe { &mut *std::slice::from_raw_parts_mut(ptr, len) };
                // SAFETY:
                // we checked bounds
                unsafe { scatter_impl(current_values, values, arr, idx, len) };
            },
            None => {
                let mut new_values = arr.values().as_slice().to_vec();
                // SAFETY:
                // we checked bounds
                unsafe { scatter_impl(&mut new_values, values, arr, idx, len) };
                arr.set_values(new_values.into());
            },
        };

        // The null count may have changed - make sure to update the ChunkedArray
        let new_null_count = arr.null_count();
        unsafe { ca.set_null_count(new_null_count) };

        Ok(ca.into_series())
    }
}

impl<'a> ChunkedSet<&'a str> for &'a StringChunked {
    fn scatter<V>(self, idx: &[IdxSize], values: V) -> PolarsResult<Series>
    where
        V: IntoIterator<Item = Option<&'a str>>,
    {
        check_bounds(idx, self.len() as IdxSize)?;
        check_sorted(idx)?;
        let mut ca_iter = self.into_iter().enumerate();
        let mut builder = StringChunkedBuilder::new(self.name().clone(), self.len());

        for (current_idx, current_value) in idx.iter().zip(values) {
            for (cnt_idx, opt_val_self) in &mut ca_iter {
                if cnt_idx == *current_idx as usize {
                    builder.append_option(current_value);
                    break;
                } else {
                    builder.append_option(opt_val_self);
                }
            }
        }
        // the last idx is probably not the last value so we finish the iterator
        for (_, opt_val_self) in ca_iter {
            builder.append_option(opt_val_self);
        }

        let ca = builder.finish();
        Ok(ca.into_series())
    }
}
impl ChunkedSet<bool> for &BooleanChunked {
    fn scatter<V>(self, idx: &[IdxSize], values: V) -> PolarsResult<Series>
    where
        V: IntoIterator<Item = Option<bool>>,
    {
        check_bounds(idx, self.len() as IdxSize)?;
        check_sorted(idx)?;
        let mut ca_iter = self.into_iter().enumerate();
        let mut builder = BooleanChunkedBuilder::new(self.name().clone(), self.len());

        for (current_idx, current_value) in idx.iter().zip(values) {
            for (cnt_idx, opt_val_self) in &mut ca_iter {
                if cnt_idx == *current_idx as usize {
                    builder.append_option(current_value);
                    break;
                } else {
                    builder.append_option(opt_val_self);
                }
            }
        }
        // the last idx is probably not the last value so we finish the iterator
        for (_, opt_val_self) in ca_iter {
            builder.append_option(opt_val_self);
        }

        let ca = builder.finish();
        Ok(ca.into_series())
    }
}