polars_core/chunked_array/ndarray.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
use ndarray::prelude::*;
use rayon::prelude::*;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use crate::prelude::*;
use crate::POOL;
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Default)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum IndexOrder {
C,
#[default]
Fortran,
}
impl<T> ChunkedArray<T>
where
T: PolarsNumericType,
{
/// If data is aligned in a single chunk and has no Null values a zero copy view is returned
/// as an [ndarray]
pub fn to_ndarray(&self) -> PolarsResult<ArrayView1<T::Native>> {
let slice = self.cont_slice()?;
Ok(aview1(slice))
}
}
impl ListChunked {
/// If all nested [`Series`] have the same length, a 2 dimensional [`ndarray::Array`] is returned.
pub fn to_ndarray<N>(&self) -> PolarsResult<Array2<N::Native>>
where
N: PolarsNumericType,
{
polars_ensure!(
self.null_count() == 0,
ComputeError: "creation of ndarray with null values is not supported"
);
// first iteration determine the size
let mut iter = self.into_no_null_iter();
let series = iter
.next()
.ok_or_else(|| polars_err!(NoData: "unable to create ndarray of empty ListChunked"))?;
let width = series.len();
let mut row_idx = 0;
let mut ndarray = ndarray::Array::uninit((self.len(), width));
let series = series.cast(&N::get_dtype())?;
let ca = series.unpack::<N>()?;
let a = ca.to_ndarray()?;
let mut row = ndarray.slice_mut(s![row_idx, ..]);
a.assign_to(&mut row);
row_idx += 1;
for series in iter {
polars_ensure!(
series.len() == width,
ShapeMismatch: "unable to create a 2-D array, series have different lengths"
);
let series = series.cast(&N::get_dtype())?;
let ca = series.unpack::<N>()?;
let a = ca.to_ndarray()?;
let mut row = ndarray.slice_mut(s![row_idx, ..]);
a.assign_to(&mut row);
row_idx += 1;
}
debug_assert_eq!(row_idx, self.len());
// SAFETY:
// We have assigned to every row and element of the array
unsafe { Ok(ndarray.assume_init()) }
}
}
impl DataFrame {
/// Create a 2D [`ndarray::Array`] from this [`DataFrame`]. This requires all columns in the
/// [`DataFrame`] to be non-null and numeric. They will be casted to the same data type
/// (if they aren't already).
///
/// For floating point data we implicitly convert `None` to `NaN` without failure.
///
/// ```rust
/// use polars_core::prelude::*;
/// let a = UInt32Chunked::new("a".into(), &[1, 2, 3]).into_column();
/// let b = Float64Chunked::new("b".into(), &[10., 8., 6.]).into_column();
///
/// let df = DataFrame::new(vec![a, b]).unwrap();
/// let ndarray = df.to_ndarray::<Float64Type>(IndexOrder::Fortran).unwrap();
/// println!("{:?}", ndarray);
/// ```
/// Outputs:
/// ```text
/// [[1.0, 10.0],
/// [2.0, 8.0],
/// [3.0, 6.0]], shape=[3, 2], strides=[1, 3], layout=Ff (0xa), const ndim=2
/// ```
pub fn to_ndarray<N>(&self, ordering: IndexOrder) -> PolarsResult<Array2<N::Native>>
where
N: PolarsNumericType,
{
let shape = self.shape();
let height = self.height();
let mut membuf = Vec::with_capacity(shape.0 * shape.1);
let ptr = membuf.as_ptr() as usize;
let columns = self.get_columns();
POOL.install(|| {
columns.par_iter().enumerate().try_for_each(|(col_idx, s)| {
let s = s.as_materialized_series().cast(&N::get_dtype())?;
let s = match s.dtype() {
DataType::Float32 => {
let ca = s.f32().unwrap();
ca.none_to_nan().into_series()
},
DataType::Float64 => {
let ca = s.f64().unwrap();
ca.none_to_nan().into_series()
},
_ => s,
};
polars_ensure!(
s.null_count() == 0,
ComputeError: "creation of ndarray with null values is not supported"
);
let ca = s.unpack::<N>()?;
let mut chunk_offset = 0;
for arr in ca.downcast_iter() {
let vals = arr.values();
// Depending on the desired order, we add items to the buffer.
// SAFETY:
// We get parallel access to the vector by offsetting index access accordingly.
// For C-order, we only operate on every num-col-th element, starting from the
// column index. For Fortran-order we only operate on n contiguous elements,
// offset by n * the column index.
match ordering {
IndexOrder::C => unsafe {
let num_cols = columns.len();
let mut offset =
(ptr as *mut N::Native).add(col_idx + chunk_offset * num_cols);
for v in vals.iter() {
*offset = *v;
offset = offset.add(num_cols);
}
},
IndexOrder::Fortran => unsafe {
let offset_ptr =
(ptr as *mut N::Native).add(col_idx * height + chunk_offset);
// SAFETY:
// this is uninitialized memory, so we must never read from this data
// copy_from_slice does not read
let buf = std::slice::from_raw_parts_mut(offset_ptr, vals.len());
buf.copy_from_slice(vals)
},
}
chunk_offset += vals.len();
}
Ok(())
})
})?;
// SAFETY:
// we have written all data, so we can now safely set length
unsafe {
membuf.set_len(shape.0 * shape.1);
}
// Depending on the desired order, we can either return the array buffer as-is or reverse
// the axes.
match ordering {
IndexOrder::C => Ok(Array2::from_shape_vec((shape.0, shape.1), membuf).unwrap()),
IndexOrder::Fortran => {
let ndarr = Array2::from_shape_vec((shape.1, shape.0), membuf).unwrap();
Ok(ndarr.reversed_axes())
},
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_ndarray_from_ca() -> PolarsResult<()> {
let ca = Float64Chunked::new(PlSmallStr::EMPTY, &[1.0, 2.0, 3.0]);
let ndarr = ca.to_ndarray()?;
assert_eq!(ndarr, ArrayView1::from(&[1.0, 2.0, 3.0]));
let mut builder = ListPrimitiveChunkedBuilder::<Float64Type>::new(
PlSmallStr::EMPTY,
10,
10,
DataType::Float64,
);
builder.append_opt_slice(Some(&[1.0, 2.0, 3.0]));
builder.append_opt_slice(Some(&[2.0, 4.0, 5.0]));
builder.append_opt_slice(Some(&[6.0, 7.0, 8.0]));
let list = builder.finish();
let ndarr = list.to_ndarray::<Float64Type>()?;
let expected = array![[1.0, 2.0, 3.0], [2.0, 4.0, 5.0], [6.0, 7.0, 8.0]];
assert_eq!(ndarr, expected);
// test list array that is not square
let mut builder = ListPrimitiveChunkedBuilder::<Float64Type>::new(
PlSmallStr::EMPTY,
10,
10,
DataType::Float64,
);
builder.append_opt_slice(Some(&[1.0, 2.0, 3.0]));
builder.append_opt_slice(Some(&[2.0]));
builder.append_opt_slice(Some(&[6.0, 7.0, 8.0]));
let list = builder.finish();
assert!(list.to_ndarray::<Float64Type>().is_err());
Ok(())
}
#[test]
fn test_ndarray_from_df_order_fortran() -> PolarsResult<()> {
let df = df!["a"=> [1.0, 2.0, 3.0],
"b" => [2.0, 3.0, 4.0]
]?;
let ndarr = df.to_ndarray::<Float64Type>(IndexOrder::Fortran)?;
let expected = array![[1.0, 2.0], [2.0, 3.0], [3.0, 4.0]];
assert!(!ndarr.is_standard_layout());
assert_eq!(ndarr, expected);
Ok(())
}
#[test]
fn test_ndarray_from_df_order_c() -> PolarsResult<()> {
let df = df!["a"=> [1.0, 2.0, 3.0],
"b" => [2.0, 3.0, 4.0]
]?;
let ndarr = df.to_ndarray::<Float64Type>(IndexOrder::C)?;
let expected = array![[1.0, 2.0], [2.0, 3.0], [3.0, 4.0]];
assert!(ndarr.is_standard_layout());
assert_eq!(ndarr, expected);
Ok(())
}
}