polars_core/chunked_array/
ndarray.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
use ndarray::prelude::*;
use rayon::prelude::*;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use crate::prelude::*;
use crate::POOL;

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Default)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum IndexOrder {
    C,
    #[default]
    Fortran,
}

impl<T> ChunkedArray<T>
where
    T: PolarsNumericType,
{
    /// If data is aligned in a single chunk and has no Null values a zero copy view is returned
    /// as an [ndarray]
    pub fn to_ndarray(&self) -> PolarsResult<ArrayView1<T::Native>> {
        let slice = self.cont_slice()?;
        Ok(aview1(slice))
    }
}

impl ListChunked {
    /// If all nested [`Series`] have the same length, a 2 dimensional [`ndarray::Array`] is returned.
    pub fn to_ndarray<N>(&self) -> PolarsResult<Array2<N::Native>>
    where
        N: PolarsNumericType,
    {
        polars_ensure!(
            self.null_count() == 0,
            ComputeError: "creation of ndarray with null values is not supported"
        );

        // first iteration determine the size
        let mut iter = self.into_no_null_iter();
        let series = iter
            .next()
            .ok_or_else(|| polars_err!(NoData: "unable to create ndarray of empty ListChunked"))?;

        let width = series.len();
        let mut row_idx = 0;
        let mut ndarray = ndarray::Array::uninit((self.len(), width));

        let series = series.cast(&N::get_dtype())?;
        let ca = series.unpack::<N>()?;
        let a = ca.to_ndarray()?;
        let mut row = ndarray.slice_mut(s![row_idx, ..]);
        a.assign_to(&mut row);
        row_idx += 1;

        for series in iter {
            polars_ensure!(
                series.len() == width,
                ShapeMismatch: "unable to create a 2-D array, series have different lengths"
            );
            let series = series.cast(&N::get_dtype())?;
            let ca = series.unpack::<N>()?;
            let a = ca.to_ndarray()?;
            let mut row = ndarray.slice_mut(s![row_idx, ..]);
            a.assign_to(&mut row);
            row_idx += 1;
        }

        debug_assert_eq!(row_idx, self.len());
        // SAFETY:
        // We have assigned to every row and element of the array
        unsafe { Ok(ndarray.assume_init()) }
    }
}

impl DataFrame {
    /// Create a 2D [`ndarray::Array`] from this [`DataFrame`]. This requires all columns in the
    /// [`DataFrame`] to be non-null and numeric. They will be casted to the same data type
    /// (if they aren't already).
    ///
    /// For floating point data we implicitly convert `None` to `NaN` without failure.
    ///
    /// ```rust
    /// use polars_core::prelude::*;
    /// let a = UInt32Chunked::new("a".into(), &[1, 2, 3]).into_column();
    /// let b = Float64Chunked::new("b".into(), &[10., 8., 6.]).into_column();
    ///
    /// let df = DataFrame::new(vec![a, b]).unwrap();
    /// let ndarray = df.to_ndarray::<Float64Type>(IndexOrder::Fortran).unwrap();
    /// println!("{:?}", ndarray);
    /// ```
    /// Outputs:
    /// ```text
    /// [[1.0, 10.0],
    ///  [2.0, 8.0],
    ///  [3.0, 6.0]], shape=[3, 2], strides=[1, 3], layout=Ff (0xa), const ndim=2
    /// ```
    pub fn to_ndarray<N>(&self, ordering: IndexOrder) -> PolarsResult<Array2<N::Native>>
    where
        N: PolarsNumericType,
    {
        let shape = self.shape();
        let height = self.height();
        let mut membuf = Vec::with_capacity(shape.0 * shape.1);
        let ptr = membuf.as_ptr() as usize;

        let columns = self.get_columns();
        POOL.install(|| {
            columns.par_iter().enumerate().try_for_each(|(col_idx, s)| {
                let s = s.as_materialized_series().cast(&N::get_dtype())?;
                let s = match s.dtype() {
                    DataType::Float32 => {
                        let ca = s.f32().unwrap();
                        ca.none_to_nan().into_series()
                    },
                    DataType::Float64 => {
                        let ca = s.f64().unwrap();
                        ca.none_to_nan().into_series()
                    },
                    _ => s,
                };
                polars_ensure!(
                    s.null_count() == 0,
                    ComputeError: "creation of ndarray with null values is not supported"
                );
                let ca = s.unpack::<N>()?;

                let mut chunk_offset = 0;
                for arr in ca.downcast_iter() {
                    let vals = arr.values();

                    // Depending on the desired order, we add items to the buffer.
                    // SAFETY:
                    // We get parallel access to the vector by offsetting index access accordingly.
                    // For C-order, we only operate on every num-col-th element, starting from the
                    // column index. For Fortran-order we only operate on n contiguous elements,
                    // offset by n * the column index.
                    match ordering {
                        IndexOrder::C => unsafe {
                            let num_cols = columns.len();
                            let mut offset =
                                (ptr as *mut N::Native).add(col_idx + chunk_offset * num_cols);
                            for v in vals.iter() {
                                *offset = *v;
                                offset = offset.add(num_cols);
                            }
                        },
                        IndexOrder::Fortran => unsafe {
                            let offset_ptr =
                                (ptr as *mut N::Native).add(col_idx * height + chunk_offset);
                            // SAFETY:
                            // this is uninitialized memory, so we must never read from this data
                            // copy_from_slice does not read
                            let buf = std::slice::from_raw_parts_mut(offset_ptr, vals.len());
                            buf.copy_from_slice(vals)
                        },
                    }
                    chunk_offset += vals.len();
                }

                Ok(())
            })
        })?;

        // SAFETY:
        // we have written all data, so we can now safely set length
        unsafe {
            membuf.set_len(shape.0 * shape.1);
        }
        // Depending on the desired order, we can either return the array buffer as-is or reverse
        // the axes.
        match ordering {
            IndexOrder::C => Ok(Array2::from_shape_vec((shape.0, shape.1), membuf).unwrap()),
            IndexOrder::Fortran => {
                let ndarr = Array2::from_shape_vec((shape.1, shape.0), membuf).unwrap();
                Ok(ndarr.reversed_axes())
            },
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_ndarray_from_ca() -> PolarsResult<()> {
        let ca = Float64Chunked::new(PlSmallStr::EMPTY, &[1.0, 2.0, 3.0]);
        let ndarr = ca.to_ndarray()?;
        assert_eq!(ndarr, ArrayView1::from(&[1.0, 2.0, 3.0]));

        let mut builder = ListPrimitiveChunkedBuilder::<Float64Type>::new(
            PlSmallStr::EMPTY,
            10,
            10,
            DataType::Float64,
        );
        builder.append_opt_slice(Some(&[1.0, 2.0, 3.0]));
        builder.append_opt_slice(Some(&[2.0, 4.0, 5.0]));
        builder.append_opt_slice(Some(&[6.0, 7.0, 8.0]));
        let list = builder.finish();

        let ndarr = list.to_ndarray::<Float64Type>()?;
        let expected = array![[1.0, 2.0, 3.0], [2.0, 4.0, 5.0], [6.0, 7.0, 8.0]];
        assert_eq!(ndarr, expected);

        // test list array that is not square
        let mut builder = ListPrimitiveChunkedBuilder::<Float64Type>::new(
            PlSmallStr::EMPTY,
            10,
            10,
            DataType::Float64,
        );
        builder.append_opt_slice(Some(&[1.0, 2.0, 3.0]));
        builder.append_opt_slice(Some(&[2.0]));
        builder.append_opt_slice(Some(&[6.0, 7.0, 8.0]));
        let list = builder.finish();
        assert!(list.to_ndarray::<Float64Type>().is_err());
        Ok(())
    }

    #[test]
    fn test_ndarray_from_df_order_fortran() -> PolarsResult<()> {
        let df = df!["a"=> [1.0, 2.0, 3.0],
            "b" => [2.0, 3.0, 4.0]
        ]?;

        let ndarr = df.to_ndarray::<Float64Type>(IndexOrder::Fortran)?;
        let expected = array![[1.0, 2.0], [2.0, 3.0], [3.0, 4.0]];
        assert!(!ndarr.is_standard_layout());
        assert_eq!(ndarr, expected);

        Ok(())
    }

    #[test]
    fn test_ndarray_from_df_order_c() -> PolarsResult<()> {
        let df = df!["a"=> [1.0, 2.0, 3.0],
            "b" => [2.0, 3.0, 4.0]
        ]?;

        let ndarr = df.to_ndarray::<Float64Type>(IndexOrder::C)?;
        let expected = array![[1.0, 2.0], [2.0, 3.0], [3.0, 4.0]];
        assert!(ndarr.is_standard_layout());
        assert_eq!(ndarr, expected);

        Ok(())
    }
}