polars_core/chunked_array/ops/aggregate/
quantile.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
use super::*;

pub trait QuantileAggSeries {
    /// Get the median of the [`ChunkedArray`] as a new [`Series`] of length 1.
    fn median_reduce(&self) -> Scalar;
    /// Get the quantile of the [`ChunkedArray`] as a new [`Series`] of length 1.
    fn quantile_reduce(&self, _quantile: f64, _method: QuantileMethod) -> PolarsResult<Scalar>;
}

/// helper
fn quantile_idx(
    quantile: f64,
    length: usize,
    null_count: usize,
    method: QuantileMethod,
) -> (usize, f64, usize) {
    let nonnull_count = (length - null_count) as f64;
    let float_idx = (nonnull_count - 1.0) * quantile + null_count as f64;
    let mut base_idx = match method {
        QuantileMethod::Nearest => {
            let idx = float_idx.round() as usize;
            return (idx, 0.0, idx);
        },
        QuantileMethod::Lower | QuantileMethod::Midpoint | QuantileMethod::Linear => {
            float_idx as usize
        },
        QuantileMethod::Higher => float_idx.ceil() as usize,
        QuantileMethod::Equiprobable => {
            let idx = ((nonnull_count * quantile).ceil() - 1.0).max(0.0) as usize + null_count;
            return (idx, 0.0, idx);
        },
    };

    base_idx = base_idx.clamp(0, length - 1);
    let top_idx = f64::ceil(float_idx) as usize;

    (base_idx, float_idx, top_idx)
}

/// helper
fn linear_interpol<T: Float>(lower: T, upper: T, idx: usize, float_idx: f64) -> T {
    if lower == upper {
        lower
    } else {
        let proportion: T = T::from(float_idx).unwrap() - T::from(idx).unwrap();
        proportion * (upper - lower) + lower
    }
}
fn midpoint_interpol<T: Float>(lower: T, upper: T) -> T {
    if lower == upper {
        lower
    } else {
        (lower + upper) / (T::one() + T::one())
    }
}

// Uses quickselect instead of sorting all data
fn quantile_slice<T: ToPrimitive + TotalOrd + Copy>(
    vals: &mut [T],
    quantile: f64,
    method: QuantileMethod,
) -> PolarsResult<Option<f64>> {
    polars_ensure!((0.0..=1.0).contains(&quantile),
        ComputeError: "quantile should be between 0.0 and 1.0",
    );
    if vals.is_empty() {
        return Ok(None);
    }
    if vals.len() == 1 {
        return Ok(vals[0].to_f64());
    }
    let (idx, float_idx, top_idx) = quantile_idx(quantile, vals.len(), 0, method);

    let (_lhs, lower, rhs) = vals.select_nth_unstable_by(idx, TotalOrd::tot_cmp);
    if idx == top_idx {
        Ok(lower.to_f64())
    } else {
        match method {
            QuantileMethod::Midpoint => {
                let upper = rhs.iter().copied().min_by(TotalOrd::tot_cmp).unwrap();
                Ok(Some(midpoint_interpol(
                    lower.to_f64().unwrap(),
                    upper.to_f64().unwrap(),
                )))
            },
            QuantileMethod::Linear => {
                let upper = rhs.iter().copied().min_by(TotalOrd::tot_cmp).unwrap();
                Ok(linear_interpol(
                    lower.to_f64().unwrap(),
                    upper.to_f64().unwrap(),
                    idx,
                    float_idx,
                )
                .to_f64())
            },
            _ => Ok(lower.to_f64()),
        }
    }
}

fn generic_quantile<T>(
    ca: ChunkedArray<T>,
    quantile: f64,
    method: QuantileMethod,
) -> PolarsResult<Option<f64>>
where
    T: PolarsNumericType,
{
    polars_ensure!(
        (0.0..=1.0).contains(&quantile),
        ComputeError: "`quantile` should be between 0.0 and 1.0",
    );

    let null_count = ca.null_count();
    let length = ca.len();

    if null_count == length {
        return Ok(None);
    }

    let (idx, float_idx, top_idx) = quantile_idx(quantile, length, null_count, method);
    let sorted = ca.sort(false);
    let lower = sorted.get(idx).map(|v| v.to_f64().unwrap());

    let opt = match method {
        QuantileMethod::Midpoint => {
            if top_idx == idx {
                lower
            } else {
                let upper = sorted.get(idx + 1).map(|v| v.to_f64().unwrap());
                midpoint_interpol(lower.unwrap(), upper.unwrap()).to_f64()
            }
        },
        QuantileMethod::Linear => {
            if top_idx == idx {
                lower
            } else {
                let upper = sorted.get(idx + 1).map(|v| v.to_f64().unwrap());

                linear_interpol(lower.unwrap(), upper.unwrap(), idx, float_idx).to_f64()
            }
        },
        _ => lower,
    };
    Ok(opt)
}

impl<T> ChunkQuantile<f64> for ChunkedArray<T>
where
    T: PolarsIntegerType,
    T::Native: TotalOrd,
{
    fn quantile(&self, quantile: f64, method: QuantileMethod) -> PolarsResult<Option<f64>> {
        // in case of sorted data, the sort is free, so don't take quickselect route
        if let (Ok(slice), false) = (self.cont_slice(), self.is_sorted_ascending_flag()) {
            let mut owned = slice.to_vec();
            quantile_slice(&mut owned, quantile, method)
        } else {
            generic_quantile(self.clone(), quantile, method)
        }
    }

    fn median(&self) -> Option<f64> {
        self.quantile(0.5, QuantileMethod::Linear).unwrap() // unwrap fine since quantile in range
    }
}

// Version of quantile/median that don't need a memcpy
impl<T> ChunkedArray<T>
where
    T: PolarsIntegerType,
    T::Native: TotalOrd,
{
    pub(crate) fn quantile_faster(
        mut self,
        quantile: f64,
        method: QuantileMethod,
    ) -> PolarsResult<Option<f64>> {
        // in case of sorted data, the sort is free, so don't take quickselect route
        let is_sorted = self.is_sorted_ascending_flag();
        if let (Some(slice), false) = (self.cont_slice_mut(), is_sorted) {
            quantile_slice(slice, quantile, method)
        } else {
            self.quantile(quantile, method)
        }
    }

    pub(crate) fn median_faster(self) -> Option<f64> {
        self.quantile_faster(0.5, QuantileMethod::Linear).unwrap()
    }
}

impl ChunkQuantile<f32> for Float32Chunked {
    fn quantile(&self, quantile: f64, method: QuantileMethod) -> PolarsResult<Option<f32>> {
        // in case of sorted data, the sort is free, so don't take quickselect route
        let out = if let (Ok(slice), false) = (self.cont_slice(), self.is_sorted_ascending_flag()) {
            let mut owned = slice.to_vec();
            quantile_slice(&mut owned, quantile, method)
        } else {
            generic_quantile(self.clone(), quantile, method)
        };
        out.map(|v| v.map(|v| v as f32))
    }

    fn median(&self) -> Option<f32> {
        self.quantile(0.5, QuantileMethod::Linear).unwrap() // unwrap fine since quantile in range
    }
}

impl ChunkQuantile<f64> for Float64Chunked {
    fn quantile(&self, quantile: f64, method: QuantileMethod) -> PolarsResult<Option<f64>> {
        // in case of sorted data, the sort is free, so don't take quickselect route
        if let (Ok(slice), false) = (self.cont_slice(), self.is_sorted_ascending_flag()) {
            let mut owned = slice.to_vec();
            quantile_slice(&mut owned, quantile, method)
        } else {
            generic_quantile(self.clone(), quantile, method)
        }
    }

    fn median(&self) -> Option<f64> {
        self.quantile(0.5, QuantileMethod::Linear).unwrap() // unwrap fine since quantile in range
    }
}

impl Float64Chunked {
    pub(crate) fn quantile_faster(
        mut self,
        quantile: f64,
        method: QuantileMethod,
    ) -> PolarsResult<Option<f64>> {
        // in case of sorted data, the sort is free, so don't take quickselect route
        let is_sorted = self.is_sorted_ascending_flag();
        if let (Some(slice), false) = (self.cont_slice_mut(), is_sorted) {
            quantile_slice(slice, quantile, method)
        } else {
            self.quantile(quantile, method)
        }
    }

    pub(crate) fn median_faster(self) -> Option<f64> {
        self.quantile_faster(0.5, QuantileMethod::Linear).unwrap()
    }
}

impl Float32Chunked {
    pub(crate) fn quantile_faster(
        mut self,
        quantile: f64,
        method: QuantileMethod,
    ) -> PolarsResult<Option<f32>> {
        // in case of sorted data, the sort is free, so don't take quickselect route
        let is_sorted = self.is_sorted_ascending_flag();
        if let (Some(slice), false) = (self.cont_slice_mut(), is_sorted) {
            quantile_slice(slice, quantile, method).map(|v| v.map(|v| v as f32))
        } else {
            self.quantile(quantile, method)
        }
    }

    pub(crate) fn median_faster(self) -> Option<f32> {
        self.quantile_faster(0.5, QuantileMethod::Linear).unwrap()
    }
}

impl ChunkQuantile<String> for StringChunked {}
impl ChunkQuantile<Series> for ListChunked {}
#[cfg(feature = "dtype-array")]
impl ChunkQuantile<Series> for ArrayChunked {}
#[cfg(feature = "object")]
impl<T: PolarsObject> ChunkQuantile<Series> for ObjectChunked<T> {}
impl ChunkQuantile<bool> for BooleanChunked {}