polars_core/series/arithmetic/list.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
//! Allow arithmetic operations for ListChunked.
//! use polars_error::{feature_gated, PolarsResult};
use polars_error::{feature_gated, PolarsResult};
use super::list_utils::NumericOp;
use super::{IntoSeries, ListChunked, ListType, NumOpsDispatchInner, Series};
impl NumOpsDispatchInner for ListType {
fn add_to(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> {
NumericListOp::add().execute(&lhs.clone().into_series(), rhs)
}
fn subtract(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> {
NumericListOp::sub().execute(&lhs.clone().into_series(), rhs)
}
fn multiply(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> {
NumericListOp::mul().execute(&lhs.clone().into_series(), rhs)
}
fn divide(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> {
NumericListOp::div().execute(&lhs.clone().into_series(), rhs)
}
fn remainder(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> {
NumericListOp::rem().execute(&lhs.clone().into_series(), rhs)
}
}
#[derive(Clone)]
pub struct NumericListOp(NumericOp);
impl NumericListOp {
pub fn add() -> Self {
Self(NumericOp::Add)
}
pub fn sub() -> Self {
Self(NumericOp::Sub)
}
pub fn mul() -> Self {
Self(NumericOp::Mul)
}
pub fn div() -> Self {
Self(NumericOp::Div)
}
pub fn rem() -> Self {
Self(NumericOp::Rem)
}
pub fn floor_div() -> Self {
Self(NumericOp::FloorDiv)
}
}
impl NumericListOp {
#[cfg_attr(not(feature = "list_arithmetic"), allow(unused))]
pub fn execute(&self, lhs: &Series, rhs: &Series) -> PolarsResult<Series> {
feature_gated!("list_arithmetic", {
use either::Either;
// `trim_to_normalized_offsets` ensures we don't perform excessive
// memory allocation / compute on memory regions that have been
// sliced out.
let lhs = lhs.list_rechunk_and_trim_to_normalized_offsets();
let rhs = rhs.list_rechunk_and_trim_to_normalized_offsets();
let binary_op_exec = match ListNumericOpHelper::try_new(
self.clone(),
lhs.name().clone(),
lhs.dtype(),
rhs.dtype(),
lhs.len(),
rhs.len(),
{
let (a, b) = lhs.list_offsets_and_validities_recursive();
debug_assert!(a.iter().all(|x| *x.first() as usize == 0));
(a, b, lhs.clone())
},
{
let (a, b) = rhs.list_offsets_and_validities_recursive();
debug_assert!(a.iter().all(|x| *x.first() as usize == 0));
(a, b, rhs.clone())
},
lhs.rechunk_validity(),
rhs.rechunk_validity(),
)? {
Either::Left(v) => v,
Either::Right(ca) => return Ok(ca.into_series()),
};
Ok(binary_op_exec.finish()?.into_series())
})
}
}
#[cfg(feature = "list_arithmetic")]
use inner::ListNumericOpHelper;
#[cfg(feature = "list_arithmetic")]
mod inner {
use arrow::bitmap::Bitmap;
use arrow::compute::utils::combine_validities_and;
use arrow::offset::OffsetsBuffer;
use either::Either;
use list_utils::with_match_pl_num_arith;
use num_traits::Zero;
use polars_compute::arithmetic::pl_num::PlNumArithmetic;
use polars_utils::float::IsFloat;
use super::super::list_utils::{BinaryOpApplyType, Broadcast, NumericOp};
use super::super::*;
/// Utility to perform a binary operation between the primitive values of
/// 2 columns, where at least one of the columns is a `ListChunked` type.
pub(super) struct ListNumericOpHelper {
op: NumericListOp,
output_name: PlSmallStr,
op_apply_type: BinaryOpApplyType,
broadcast: Broadcast,
output_dtype: DataType,
output_primitive_dtype: DataType,
output_len: usize,
/// Outer validity of the result, we always materialize this to reduce the
/// amount of code paths we need.
outer_validity: Bitmap,
// The series are stored as they are used for list broadcasting.
data_lhs: (Vec<OffsetsBuffer<i64>>, Vec<Option<Bitmap>>, Series),
data_rhs: (Vec<OffsetsBuffer<i64>>, Vec<Option<Bitmap>>, Series),
list_to_prim_lhs: Option<(Box<dyn Array>, usize)>,
swapped: bool,
}
/// This lets us separate some logic into `new()` to reduce the amount of
/// monomorphized code.
impl ListNumericOpHelper {
/// Checks that:
/// * Dtypes are compatible:
/// * list<->primitive | primitive<->list
/// * list<->list both contain primitives (e.g. List<Int8>)
/// * Primitive dtypes match
/// * Lengths are compatible:
/// * 1<->n | n<->1
/// * n<->n
/// * Both sides have at least 1 non-NULL outer row.
///
/// Does not check:
/// * Whether the offsets are aligned for list<->list, this will be checked during execution.
///
/// This returns an `Either` which may contain the final result to simplify
/// the implementation.
#[allow(clippy::too_many_arguments)]
pub(super) fn try_new(
op: NumericListOp,
output_name: PlSmallStr,
dtype_lhs: &DataType,
dtype_rhs: &DataType,
len_lhs: usize,
len_rhs: usize,
data_lhs: (Vec<OffsetsBuffer<i64>>, Vec<Option<Bitmap>>, Series),
data_rhs: (Vec<OffsetsBuffer<i64>>, Vec<Option<Bitmap>>, Series),
validity_lhs: Option<Bitmap>,
validity_rhs: Option<Bitmap>,
) -> PolarsResult<Either<Self, ListChunked>> {
let prim_dtype_lhs = dtype_lhs.leaf_dtype();
let prim_dtype_rhs = dtype_rhs.leaf_dtype();
let output_primitive_dtype =
op.0.try_get_leaf_supertype(prim_dtype_lhs, prim_dtype_rhs)?;
fn is_list_type_at_all_levels(dtype: &DataType) -> bool {
match dtype {
DataType::List(inner) => is_list_type_at_all_levels(inner),
dt if dt.is_supported_list_arithmetic_input() => true,
_ => false,
}
}
let op_err_msg = |err_reason: &str| {
polars_err!(
InvalidOperation:
"cannot {} columns: {}: (left: {}, right: {})",
op.0.name(), err_reason, dtype_lhs, dtype_rhs,
)
};
let ensure_list_type_at_all_levels = |dtype: &DataType| {
if !is_list_type_at_all_levels(dtype) {
Err(op_err_msg("dtype was not list on all nesting levels"))
} else {
Ok(())
}
};
let (op_apply_type, output_dtype) = match (dtype_lhs, dtype_rhs) {
(l @ DataType::List(a), r @ DataType::List(b)) => {
// `get_arithmetic_field()` in the DSL checks this, but we also have to check here because if a user
// directly adds 2 series together it bypasses the DSL.
// This is currently duplicated code and should be replaced one day with an assert after Series ops get
// checked properly.
if ![a, b]
.into_iter()
.all(|x| x.is_supported_list_arithmetic_input())
{
polars_bail!(
InvalidOperation:
"cannot {} two list columns with non-numeric inner types: (left: {}, right: {})",
op.0.name(), l, r,
);
}
(BinaryOpApplyType::ListToList, l)
},
(list_dtype @ DataType::List(_), x) if x.is_supported_list_arithmetic_input() => {
ensure_list_type_at_all_levels(list_dtype)?;
(BinaryOpApplyType::ListToPrimitive, list_dtype)
},
(x, list_dtype @ DataType::List(_)) if x.is_supported_list_arithmetic_input() => {
ensure_list_type_at_all_levels(list_dtype)?;
(BinaryOpApplyType::PrimitiveToList, list_dtype)
},
(l, r) => polars_bail!(
InvalidOperation:
"{} operation not supported for dtypes: {} != {}",
op.0.name(), l, r,
),
};
let output_dtype = output_dtype.cast_leaf(output_primitive_dtype.clone());
let (broadcast, output_len) = match (len_lhs, len_rhs) {
(l, r) if l == r => (Broadcast::NoBroadcast, l),
(1, v) => (Broadcast::Left, v),
(v, 1) => (Broadcast::Right, v),
(l, r) => polars_bail!(
ShapeMismatch:
"cannot {} two columns of differing lengths: {} != {}",
op.0.name(), l, r
),
};
let DataType::List(output_inner_dtype) = &output_dtype else {
unreachable!()
};
// # NULL semantics
// * [[1, 2]] (List[List[Int64]]) + NULL (Int64) => [[NULL, NULL]]
// * Essentially as if the NULL primitive was added to every primitive in the row of the list column.
// * NULL (List[Int64]) + 1 (Int64) => NULL
// * NULL (List[Int64]) + [1] (List[Int64]) => NULL
if output_len == 0
|| (matches!(
&op_apply_type,
BinaryOpApplyType::ListToList | BinaryOpApplyType::ListToPrimitive
) && validity_lhs.as_ref().is_some_and(|x| x.set_bits() == 0))
|| (matches!(
&op_apply_type,
BinaryOpApplyType::ListToList | BinaryOpApplyType::PrimitiveToList
) && validity_rhs.as_ref().is_some_and(|x| x.set_bits() == 0))
{
return Ok(Either::Right(ListChunked::full_null_with_dtype(
output_name.clone(),
output_len,
output_inner_dtype.as_ref(),
)));
}
// At this point:
// * All unit length list columns have a valid outer value.
// The outer validity is just the validity of any non-broadcasting lists.
let outer_validity = match (&op_apply_type, &broadcast, validity_lhs, validity_rhs) {
// Both lists with same length, we combine the validity.
(BinaryOpApplyType::ListToList, Broadcast::NoBroadcast, l, r) => {
combine_validities_and(l.as_ref(), r.as_ref())
},
// Match all other combinations that have non-broadcasting lists.
(
BinaryOpApplyType::ListToList | BinaryOpApplyType::ListToPrimitive,
Broadcast::NoBroadcast | Broadcast::Right,
v,
_,
)
| (
BinaryOpApplyType::ListToList | BinaryOpApplyType::PrimitiveToList,
Broadcast::NoBroadcast | Broadcast::Left,
_,
v,
) => v,
_ => None,
}
.unwrap_or_else(|| Bitmap::new_with_value(true, output_len));
Ok(Either::Left(Self {
op,
output_name,
op_apply_type,
broadcast,
output_dtype: output_dtype.clone(),
output_primitive_dtype,
output_len,
outer_validity,
data_lhs,
data_rhs,
list_to_prim_lhs: None,
swapped: false,
}))
}
pub(super) fn finish(mut self) -> PolarsResult<ListChunked> {
// We have physical codepaths for a subset of the possible combinations of broadcasting and
// column types. The remaining combinations are handled by dispatching to the physical
// codepaths after operand swapping and/or materialized broadcasting.
//
// # Physical impl table
// Legend
// * | N | // impl "N"
// * | [N] | // dispatches to impl "N"
//
// | L | N | R | // Broadcast (L)eft, (N)oBroadcast, (R)ight
// ListToList | [1] | 0 | 1 |
// ListToPrimitive | [2] | 2 | 3 | // list broadcasting just materializes and dispatches to NoBroadcast
// PrimitiveToList | [3] | [2] | [2] |
self.swapped = true;
match (&self.op_apply_type, &self.broadcast) {
(BinaryOpApplyType::ListToList, Broadcast::NoBroadcast)
| (BinaryOpApplyType::ListToList, Broadcast::Right)
| (BinaryOpApplyType::ListToPrimitive, Broadcast::NoBroadcast)
| (BinaryOpApplyType::ListToPrimitive, Broadcast::Right) => {
self.swapped = false;
self._finish_impl_dispatch()
},
(BinaryOpApplyType::ListToList, Broadcast::Left) => {
self.broadcast = Broadcast::Right;
std::mem::swap(&mut self.data_lhs, &mut self.data_rhs);
self._finish_impl_dispatch()
},
(BinaryOpApplyType::ListToPrimitive, Broadcast::Left) => {
self.list_to_prim_lhs
.replace(Self::materialize_broadcasted_list(
&mut self.data_lhs,
self.output_len,
&self.output_primitive_dtype,
));
self.broadcast = Broadcast::NoBroadcast;
// This does not swap! We are just dispatching to `NoBroadcast`
// after materializing the broadcasted list array.
self.swapped = false;
self._finish_impl_dispatch()
},
(BinaryOpApplyType::PrimitiveToList, Broadcast::NoBroadcast) => {
self.op_apply_type = BinaryOpApplyType::ListToPrimitive;
std::mem::swap(&mut self.data_lhs, &mut self.data_rhs);
self._finish_impl_dispatch()
},
(BinaryOpApplyType::PrimitiveToList, Broadcast::Right) => {
// We materialize the list columns with `new_from_index`, as otherwise we'd have to
// implement logic that broadcasts the offsets and validities across multiple levels
// of nesting. But we will re-use the materialized memory to store the result.
self.list_to_prim_lhs
.replace(Self::materialize_broadcasted_list(
&mut self.data_rhs,
self.output_len,
&self.output_primitive_dtype,
));
self.op_apply_type = BinaryOpApplyType::ListToPrimitive;
self.broadcast = Broadcast::NoBroadcast;
std::mem::swap(&mut self.data_lhs, &mut self.data_rhs);
self._finish_impl_dispatch()
},
(BinaryOpApplyType::PrimitiveToList, Broadcast::Left) => {
self.op_apply_type = BinaryOpApplyType::ListToPrimitive;
self.broadcast = Broadcast::Right;
std::mem::swap(&mut self.data_lhs, &mut self.data_rhs);
self._finish_impl_dispatch()
},
}
}
fn _finish_impl_dispatch(&mut self) -> PolarsResult<ListChunked> {
let output_dtype = self.output_dtype.clone();
let output_len = self.output_len;
let prim_lhs = self
.data_lhs
.2
.get_leaf_array()
.cast(&self.output_primitive_dtype)?
.rechunk();
let prim_rhs = self
.data_rhs
.2
.get_leaf_array()
.cast(&self.output_primitive_dtype)?
.rechunk();
debug_assert_eq!(prim_lhs.dtype(), prim_rhs.dtype());
let prim_dtype = prim_lhs.dtype();
debug_assert_eq!(prim_dtype, &self.output_primitive_dtype);
// Safety: Leaf dtypes have been checked to be numeric by `try_new()`
let out = with_match_physical_numeric_polars_type!(&prim_dtype, |$T| {
self._finish_impl::<$T>(prim_lhs, prim_rhs)
})?;
debug_assert_eq!(out.dtype(), &output_dtype);
assert_eq!(out.len(), output_len);
Ok(out)
}
/// Internal use only - contains physical impls.
fn _finish_impl<T: PolarsNumericType>(
&mut self,
prim_s_lhs: Series,
prim_s_rhs: Series,
) -> PolarsResult<ListChunked>
where
T::Native: PlNumArithmetic,
PrimitiveArray<T::Native>:
polars_compute::comparisons::TotalEqKernel<Scalar = T::Native>,
T::Native: Zero + IsFloat,
{
#[inline(never)]
fn check_mismatch_pos(
mismatch_pos: usize,
offsets_lhs: &OffsetsBuffer<i64>,
offsets_rhs: &OffsetsBuffer<i64>,
) -> PolarsResult<()> {
if mismatch_pos < offsets_lhs.len_proxy() {
// RHS could be broadcasted
let len_r = offsets_rhs.length_at(if offsets_rhs.len_proxy() == 1 {
0
} else {
mismatch_pos
});
polars_bail!(
ShapeMismatch:
"list lengths differed at index {}: {} != {}",
mismatch_pos,
offsets_lhs.length_at(mismatch_pos), len_r
)
}
Ok(())
}
let mut arr_lhs = {
let ca: &ChunkedArray<T> = prim_s_lhs.as_ref().as_ref();
assert_eq!(ca.chunks().len(), 1);
ca.downcast_get(0).unwrap().clone()
};
let mut arr_rhs = {
let ca: &ChunkedArray<T> = prim_s_rhs.as_ref().as_ref();
assert_eq!(ca.chunks().len(), 1);
ca.downcast_get(0).unwrap().clone()
};
match (&self.op_apply_type, &self.broadcast) {
// We skip for this because it dispatches to `ArithmeticKernel`, which handles the
// validities for us.
(BinaryOpApplyType::ListToPrimitive, Broadcast::Right) => {},
_ if self.list_to_prim_lhs.is_none() => {
self.op.0.prepare_numeric_op_side_validities::<T>(
&mut arr_lhs,
&mut arr_rhs,
self.swapped,
)
},
(BinaryOpApplyType::ListToPrimitive, Broadcast::NoBroadcast) => {
// `self.list_to_prim_lhs` is `Some(_)`, this is handled later.
},
_ => unreachable!(),
}
//
// General notes
// * Lists can be:
// * Sliced, in which case the primitive/leaf array needs to be indexed starting from an
// offset instead of 0.
// * Masked, in which case the masked rows are permitted to have non-matching widths.
//
let out = match (&self.op_apply_type, &self.broadcast) {
(BinaryOpApplyType::ListToList, Broadcast::NoBroadcast) => {
let offsets_lhs = &self.data_lhs.0[0];
let offsets_rhs = &self.data_rhs.0[0];
assert_eq!(offsets_lhs.len_proxy(), offsets_rhs.len_proxy());
// Output primitive (and optional validity) are aligned to the LHS input.
let n_values = arr_lhs.len();
let mut out_vec: Vec<T::Native> = Vec::with_capacity(n_values);
let out_ptr: *mut T::Native = out_vec.as_mut_ptr();
// Counter that stops being incremented at the first row position with mismatching
// list lengths.
let mut mismatch_pos = 0;
with_match_pl_num_arith!(&self.op.0, self.swapped, |$OP| {
for (i, ((lhs_start, lhs_len), (rhs_start, rhs_len))) in offsets_lhs
.offset_and_length_iter()
.zip(offsets_rhs.offset_and_length_iter())
.enumerate()
{
if
(mismatch_pos == i)
& (
(lhs_len == rhs_len)
| unsafe { !self.outer_validity.get_bit_unchecked(i) }
)
{
mismatch_pos += 1;
}
// Both sides are lists, we restrict the index to the min length to avoid
// OOB memory access.
let len: usize = lhs_len.min(rhs_len);
for i in 0..len {
let l_idx = i + lhs_start;
let r_idx = i + rhs_start;
let l = unsafe { arr_lhs.value_unchecked(l_idx) };
let r = unsafe { arr_rhs.value_unchecked(r_idx) };
let v = $OP(l, r);
unsafe { out_ptr.add(l_idx).write(v) };
}
}
});
check_mismatch_pos(mismatch_pos, offsets_lhs, offsets_rhs)?;
unsafe { out_vec.set_len(n_values) };
/// Reduce monomorphization
#[inline(never)]
fn combine_validities_list_to_list_no_broadcast(
offsets_lhs: &OffsetsBuffer<i64>,
offsets_rhs: &OffsetsBuffer<i64>,
validity_lhs: Option<&Bitmap>,
validity_rhs: Option<&Bitmap>,
len_lhs: usize,
) -> Option<Bitmap> {
match (validity_lhs, validity_rhs) {
(Some(l), Some(r)) => Some((l.clone().make_mut(), r)),
(Some(v), None) => return Some(v.clone()),
(None, Some(v)) => {
Some((Bitmap::new_with_value(true, len_lhs).make_mut(), v))
},
(None, None) => None,
}
.map(|(mut validity_out, validity_rhs)| {
for ((lhs_start, lhs_len), (rhs_start, rhs_len)) in offsets_lhs
.offset_and_length_iter()
.zip(offsets_rhs.offset_and_length_iter())
{
let len: usize = lhs_len.min(rhs_len);
for i in 0..len {
let l_idx = i + lhs_start;
let r_idx = i + rhs_start;
let l_valid = unsafe { validity_out.get_unchecked(l_idx) };
let r_valid = unsafe { validity_rhs.get_bit_unchecked(r_idx) };
let is_valid = l_valid & r_valid;
// Size and alignment of validity vec are based on LHS.
unsafe { validity_out.set_unchecked(l_idx, is_valid) };
}
}
validity_out.freeze()
})
}
let leaf_validity = combine_validities_list_to_list_no_broadcast(
offsets_lhs,
offsets_rhs,
arr_lhs.validity(),
arr_rhs.validity(),
arr_lhs.len(),
);
let arr =
PrimitiveArray::<T::Native>::from_vec(out_vec).with_validity(leaf_validity);
let (offsets, validities, _) = std::mem::take(&mut self.data_lhs);
assert_eq!(offsets.len(), 1);
self.finish_offsets_and_validities(Box::new(arr), offsets, validities)
},
(BinaryOpApplyType::ListToList, Broadcast::Right) => {
let offsets_lhs = &self.data_lhs.0[0];
let offsets_rhs = &self.data_rhs.0[0];
// Output primitive (and optional validity) are aligned to the LHS input.
let n_values = arr_lhs.len();
let mut out_vec: Vec<T::Native> = Vec::with_capacity(n_values);
let out_ptr: *mut T::Native = out_vec.as_mut_ptr();
assert_eq!(offsets_rhs.len_proxy(), 1);
let rhs_start = *offsets_rhs.first() as usize;
let width = offsets_rhs.range() as usize;
let mut mismatch_pos = 0;
with_match_pl_num_arith!(&self.op.0, self.swapped, |$OP| {
for (i, (lhs_start, lhs_len)) in offsets_lhs.offset_and_length_iter().enumerate() {
if ((lhs_len == width) & (mismatch_pos == i))
| unsafe { !self.outer_validity.get_bit_unchecked(i) }
{
mismatch_pos += 1;
}
let len: usize = lhs_len.min(width);
for i in 0..len {
let l_idx = i + lhs_start;
let r_idx = i + rhs_start;
let l = unsafe { arr_lhs.value_unchecked(l_idx) };
let r = unsafe { arr_rhs.value_unchecked(r_idx) };
let v = $OP(l, r);
unsafe {
out_ptr.add(l_idx).write(v);
}
}
}
});
check_mismatch_pos(mismatch_pos, offsets_lhs, offsets_rhs)?;
unsafe { out_vec.set_len(n_values) };
#[inline(never)]
fn combine_validities_list_to_list_broadcast_right(
offsets_lhs: &OffsetsBuffer<i64>,
validity_lhs: Option<&Bitmap>,
validity_rhs: Option<&Bitmap>,
len_lhs: usize,
width: usize,
rhs_start: usize,
) -> Option<Bitmap> {
match (validity_lhs, validity_rhs) {
(Some(l), Some(r)) => Some((l.clone().make_mut(), r)),
(Some(v), None) => return Some(v.clone()),
(None, Some(v)) => {
Some((Bitmap::new_with_value(true, len_lhs).make_mut(), v))
},
(None, None) => None,
}
.map(|(mut validity_out, validity_rhs)| {
for (lhs_start, lhs_len) in offsets_lhs.offset_and_length_iter() {
let len: usize = lhs_len.min(width);
for i in 0..len {
let l_idx = i + lhs_start;
let r_idx = i + rhs_start;
let l_valid = unsafe { validity_out.get_unchecked(l_idx) };
let r_valid = unsafe { validity_rhs.get_bit_unchecked(r_idx) };
let is_valid = l_valid & r_valid;
// Size and alignment of validity vec are based on LHS.
unsafe { validity_out.set_unchecked(l_idx, is_valid) };
}
}
validity_out.freeze()
})
}
let leaf_validity = combine_validities_list_to_list_broadcast_right(
offsets_lhs,
arr_lhs.validity(),
arr_rhs.validity(),
arr_lhs.len(),
width,
rhs_start,
);
let arr =
PrimitiveArray::<T::Native>::from_vec(out_vec).with_validity(leaf_validity);
let (offsets, validities, _) = std::mem::take(&mut self.data_lhs);
assert_eq!(offsets.len(), 1);
self.finish_offsets_and_validities(Box::new(arr), offsets, validities)
},
(BinaryOpApplyType::ListToPrimitive, Broadcast::NoBroadcast)
if self.list_to_prim_lhs.is_none() =>
{
let offsets_lhs = self.data_lhs.0.as_slice();
// Notes
// * Primitive indexing starts from 0
// * Output is aligned to LHS array
let n_values = arr_lhs.len();
let mut out_vec = Vec::<T::Native>::with_capacity(n_values);
let out_ptr = out_vec.as_mut_ptr();
with_match_pl_num_arith!(&self.op.0, self.swapped, |$OP| {
for (i, l_range) in OffsetsBuffer::<i64>::leaf_ranges_iter(offsets_lhs).enumerate()
{
let r = unsafe { arr_rhs.value_unchecked(i) };
for l_idx in l_range {
unsafe {
let l = arr_lhs.value_unchecked(l_idx);
let v = $OP(l, r);
out_ptr.add(l_idx).write(v);
}
}
}
});
unsafe { out_vec.set_len(n_values) }
let leaf_validity = combine_validities_list_to_primitive_no_broadcast(
offsets_lhs,
arr_lhs.validity(),
arr_rhs.validity(),
arr_lhs.len(),
);
let arr =
PrimitiveArray::<T::Native>::from_vec(out_vec).with_validity(leaf_validity);
let (offsets, validities, _) = std::mem::take(&mut self.data_lhs);
self.finish_offsets_and_validities(Box::new(arr), offsets, validities)
},
// If we are dispatched here, it means that the LHS array is a unique allocation created
// after a unit-length list column was broadcasted, so this codepath mutably stores the
// results back into the LHS array to save memory.
(BinaryOpApplyType::ListToPrimitive, Broadcast::NoBroadcast) => {
let offsets_lhs = self.data_lhs.0.as_slice();
let (mut arr, n_values) = Option::take(&mut self.list_to_prim_lhs).unwrap();
let arr = arr
.as_any_mut()
.downcast_mut::<PrimitiveArray<T::Native>>()
.unwrap();
let mut arr_lhs = std::mem::take(arr);
self.op.0.prepare_numeric_op_side_validities::<T>(
&mut arr_lhs,
&mut arr_rhs,
self.swapped,
);
let arr_lhs_mut_slice = arr_lhs.get_mut_values().unwrap();
assert_eq!(arr_lhs_mut_slice.len(), n_values);
with_match_pl_num_arith!(&self.op.0, self.swapped, |$OP| {
for (i, l_range) in OffsetsBuffer::<i64>::leaf_ranges_iter(offsets_lhs).enumerate()
{
let r = unsafe { arr_rhs.value_unchecked(i) };
for l_idx in l_range {
unsafe {
let l = arr_lhs_mut_slice.get_unchecked_mut(l_idx);
*l = $OP(*l, r);
}
}
}
});
let leaf_validity = combine_validities_list_to_primitive_no_broadcast(
offsets_lhs,
arr_lhs.validity(),
arr_rhs.validity(),
arr_lhs.len(),
);
let arr = arr_lhs.with_validity(leaf_validity);
let (offsets, validities, _) = std::mem::take(&mut self.data_lhs);
self.finish_offsets_and_validities(Box::new(arr), offsets, validities)
},
(BinaryOpApplyType::ListToPrimitive, Broadcast::Right) => {
assert_eq!(arr_rhs.len(), 1);
let Some(r) = (unsafe { arr_rhs.get_unchecked(0) }) else {
// RHS is single primitive NULL, create the result by setting the leaf validity to all-NULL.
let (offsets, validities, _) = std::mem::take(&mut self.data_lhs);
return Ok(self.finish_offsets_and_validities(
Box::new(
arr_lhs.clone().with_validity(Some(Bitmap::new_with_value(
false,
arr_lhs.len(),
))),
),
offsets,
validities,
));
};
let arr = self
.op
.0
.apply_array_to_scalar::<T>(arr_lhs, r, self.swapped);
let (offsets, validities, _) = std::mem::take(&mut self.data_lhs);
self.finish_offsets_and_validities(Box::new(arr), offsets, validities)
},
v @ (BinaryOpApplyType::PrimitiveToList, Broadcast::Right)
| v @ (BinaryOpApplyType::ListToList, Broadcast::Left)
| v @ (BinaryOpApplyType::ListToPrimitive, Broadcast::Left)
| v @ (BinaryOpApplyType::PrimitiveToList, Broadcast::Left)
| v @ (BinaryOpApplyType::PrimitiveToList, Broadcast::NoBroadcast) => {
if cfg!(debug_assertions) {
panic!("operation was not re-written: {:?}", v)
} else {
unreachable!()
}
},
};
Ok(out)
}
/// Construct the result `ListChunked` from the leaf array and the offsets/validities of every
/// level.
fn finish_offsets_and_validities(
&mut self,
leaf_array: Box<dyn Array>,
offsets: Vec<OffsetsBuffer<i64>>,
validities: Vec<Option<Bitmap>>,
) -> ListChunked {
assert!(!offsets.is_empty());
assert_eq!(offsets.len(), validities.len());
let mut results = leaf_array;
let mut iter = offsets.into_iter().zip(validities).rev();
while iter.len() > 1 {
let (offsets, validity) = iter.next().unwrap();
let dtype = LargeListArray::default_datatype(results.dtype().clone());
results = Box::new(LargeListArray::new(dtype, offsets, results, validity));
}
// The combined outer validity is pre-computed during `try_new()`
let (offsets, _) = iter.next().unwrap();
let validity = std::mem::take(&mut self.outer_validity);
let dtype = LargeListArray::default_datatype(results.dtype().clone());
let results = LargeListArray::new(dtype, offsets, results, Some(validity));
ListChunked::with_chunk(std::mem::take(&mut self.output_name), results)
}
fn materialize_broadcasted_list(
side_data: &mut (Vec<OffsetsBuffer<i64>>, Vec<Option<Bitmap>>, Series),
output_len: usize,
output_primitive_dtype: &DataType,
) -> (Box<dyn Array>, usize) {
let s = &side_data.2;
assert_eq!(s.len(), 1);
let expected_n_values = {
let offsets = s.list_offsets_and_validities_recursive().0;
output_len * OffsetsBuffer::<i64>::leaf_full_start_end(&offsets).len()
};
let ca = s.list().unwrap();
// Remember to cast the leaf primitives to the supertype.
let ca = ca
.cast(&ca.dtype().cast_leaf(output_primitive_dtype.clone()))
.unwrap();
assert!(output_len > 1); // In case there is a fast-path that doesn't give us owned data.
let ca = ca.new_from_index(0, output_len).rechunk();
let s = ca.into_series();
*side_data = {
let (a, b) = s.list_offsets_and_validities_recursive();
// `Series::default()`: This field in the tuple is no longer used.
(a, b, Series::default())
};
let n_values = OffsetsBuffer::<i64>::leaf_full_start_end(&side_data.0).len();
assert_eq!(n_values, expected_n_values);
let mut s = s.get_leaf_array();
let v = unsafe { s.chunks_mut() };
assert_eq!(v.len(), 1);
(v.swap_remove(0), n_values)
}
}
/// Used in 2 places, so it's outside here.
#[inline(never)]
fn combine_validities_list_to_primitive_no_broadcast(
offsets_lhs: &[OffsetsBuffer<i64>],
validity_lhs: Option<&Bitmap>,
validity_rhs: Option<&Bitmap>,
len_lhs: usize,
) -> Option<Bitmap> {
match (validity_lhs, validity_rhs) {
(Some(l), Some(r)) => Some((l.clone().make_mut(), r)),
(Some(v), None) => return Some(v.clone()),
// Materialize a full-true validity to re-use the codepath, as we still
// need to spread the bits from the RHS to the correct positions.
(None, Some(v)) => Some((Bitmap::new_with_value(true, len_lhs).make_mut(), v)),
(None, None) => None,
}
.map(|(mut validity_out, validity_rhs)| {
for (i, l_range) in OffsetsBuffer::<i64>::leaf_ranges_iter(offsets_lhs).enumerate() {
let r_valid = unsafe { validity_rhs.get_bit_unchecked(i) };
for l_idx in l_range {
let l_valid = unsafe { validity_out.get_unchecked(l_idx) };
let is_valid = l_valid & r_valid;
// Size and alignment of validity vec are based on LHS.
unsafe { validity_out.set_unchecked(l_idx, is_valid) };
}
}
validity_out.freeze()
})
}
}