polars_core/series/arithmetic/
list.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
//! Allow arithmetic operations for ListChunked.
//! use polars_error::{feature_gated, PolarsResult};

use polars_error::{feature_gated, PolarsResult};

use super::list_utils::NumericOp;
use super::{IntoSeries, ListChunked, ListType, NumOpsDispatchInner, Series};

impl NumOpsDispatchInner for ListType {
    fn add_to(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> {
        NumericListOp::add().execute(&lhs.clone().into_series(), rhs)
    }

    fn subtract(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> {
        NumericListOp::sub().execute(&lhs.clone().into_series(), rhs)
    }

    fn multiply(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> {
        NumericListOp::mul().execute(&lhs.clone().into_series(), rhs)
    }

    fn divide(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> {
        NumericListOp::div().execute(&lhs.clone().into_series(), rhs)
    }

    fn remainder(lhs: &ListChunked, rhs: &Series) -> PolarsResult<Series> {
        NumericListOp::rem().execute(&lhs.clone().into_series(), rhs)
    }
}

#[derive(Clone)]
pub struct NumericListOp(NumericOp);

impl NumericListOp {
    pub fn add() -> Self {
        Self(NumericOp::Add)
    }

    pub fn sub() -> Self {
        Self(NumericOp::Sub)
    }

    pub fn mul() -> Self {
        Self(NumericOp::Mul)
    }

    pub fn div() -> Self {
        Self(NumericOp::Div)
    }

    pub fn rem() -> Self {
        Self(NumericOp::Rem)
    }

    pub fn floor_div() -> Self {
        Self(NumericOp::FloorDiv)
    }
}

impl NumericListOp {
    #[cfg_attr(not(feature = "list_arithmetic"), allow(unused))]
    pub fn execute(&self, lhs: &Series, rhs: &Series) -> PolarsResult<Series> {
        feature_gated!("list_arithmetic", {
            use either::Either;

            // `trim_to_normalized_offsets` ensures we don't perform excessive
            // memory allocation / compute on memory regions that have been
            // sliced out.
            let lhs = lhs.list_rechunk_and_trim_to_normalized_offsets();
            let rhs = rhs.list_rechunk_and_trim_to_normalized_offsets();

            let binary_op_exec = match ListNumericOpHelper::try_new(
                self.clone(),
                lhs.name().clone(),
                lhs.dtype(),
                rhs.dtype(),
                lhs.len(),
                rhs.len(),
                {
                    let (a, b) = lhs.list_offsets_and_validities_recursive();
                    debug_assert!(a.iter().all(|x| *x.first() as usize == 0));
                    (a, b, lhs.clone())
                },
                {
                    let (a, b) = rhs.list_offsets_and_validities_recursive();
                    debug_assert!(a.iter().all(|x| *x.first() as usize == 0));
                    (a, b, rhs.clone())
                },
                lhs.rechunk_validity(),
                rhs.rechunk_validity(),
            )? {
                Either::Left(v) => v,
                Either::Right(ca) => return Ok(ca.into_series()),
            };

            Ok(binary_op_exec.finish()?.into_series())
        })
    }
}

#[cfg(feature = "list_arithmetic")]
use inner::ListNumericOpHelper;

#[cfg(feature = "list_arithmetic")]
mod inner {
    use arrow::bitmap::Bitmap;
    use arrow::compute::utils::combine_validities_and;
    use arrow::offset::OffsetsBuffer;
    use either::Either;
    use list_utils::with_match_pl_num_arith;
    use num_traits::Zero;
    use polars_compute::arithmetic::pl_num::PlNumArithmetic;
    use polars_utils::float::IsFloat;

    use super::super::list_utils::{BinaryOpApplyType, Broadcast, NumericOp};
    use super::super::*;

    /// Utility to perform a binary operation between the primitive values of
    /// 2 columns, where at least one of the columns is a `ListChunked` type.
    pub(super) struct ListNumericOpHelper {
        op: NumericListOp,
        output_name: PlSmallStr,
        op_apply_type: BinaryOpApplyType,
        broadcast: Broadcast,
        output_dtype: DataType,
        output_primitive_dtype: DataType,
        output_len: usize,
        /// Outer validity of the result, we always materialize this to reduce the
        /// amount of code paths we need.
        outer_validity: Bitmap,
        // The series are stored as they are used for list broadcasting.
        data_lhs: (Vec<OffsetsBuffer<i64>>, Vec<Option<Bitmap>>, Series),
        data_rhs: (Vec<OffsetsBuffer<i64>>, Vec<Option<Bitmap>>, Series),
        list_to_prim_lhs: Option<(Box<dyn Array>, usize)>,
        swapped: bool,
    }

    /// This lets us separate some logic into `new()` to reduce the amount of
    /// monomorphized code.
    impl ListNumericOpHelper {
        /// Checks that:
        /// * Dtypes are compatible:
        ///   * list<->primitive | primitive<->list
        ///   * list<->list both contain primitives (e.g. List<Int8>)
        /// * Primitive dtypes match
        /// * Lengths are compatible:
        ///   * 1<->n | n<->1
        ///   * n<->n
        /// * Both sides have at least 1 non-NULL outer row.
        ///
        /// Does not check:
        /// * Whether the offsets are aligned for list<->list, this will be checked during execution.
        ///
        /// This returns an `Either` which may contain the final result to simplify
        /// the implementation.
        #[allow(clippy::too_many_arguments)]
        pub(super) fn try_new(
            op: NumericListOp,
            output_name: PlSmallStr,
            dtype_lhs: &DataType,
            dtype_rhs: &DataType,
            len_lhs: usize,
            len_rhs: usize,
            data_lhs: (Vec<OffsetsBuffer<i64>>, Vec<Option<Bitmap>>, Series),
            data_rhs: (Vec<OffsetsBuffer<i64>>, Vec<Option<Bitmap>>, Series),
            validity_lhs: Option<Bitmap>,
            validity_rhs: Option<Bitmap>,
        ) -> PolarsResult<Either<Self, ListChunked>> {
            let prim_dtype_lhs = dtype_lhs.leaf_dtype();
            let prim_dtype_rhs = dtype_rhs.leaf_dtype();

            let output_primitive_dtype =
                op.0.try_get_leaf_supertype(prim_dtype_lhs, prim_dtype_rhs)?;

            fn is_list_type_at_all_levels(dtype: &DataType) -> bool {
                match dtype {
                    DataType::List(inner) => is_list_type_at_all_levels(inner),
                    dt if dt.is_supported_list_arithmetic_input() => true,
                    _ => false,
                }
            }

            let op_err_msg = |err_reason: &str| {
                polars_err!(
                    InvalidOperation:
                    "cannot {} columns: {}: (left: {}, right: {})",
                    op.0.name(), err_reason, dtype_lhs, dtype_rhs,
                )
            };

            let ensure_list_type_at_all_levels = |dtype: &DataType| {
                if !is_list_type_at_all_levels(dtype) {
                    Err(op_err_msg("dtype was not list on all nesting levels"))
                } else {
                    Ok(())
                }
            };

            let (op_apply_type, output_dtype) = match (dtype_lhs, dtype_rhs) {
                (l @ DataType::List(a), r @ DataType::List(b)) => {
                    // `get_arithmetic_field()` in the DSL checks this, but we also have to check here because if a user
                    // directly adds 2 series together it bypasses the DSL.
                    // This is currently duplicated code and should be replaced one day with an assert after Series ops get
                    // checked properly.
                    if ![a, b]
                        .into_iter()
                        .all(|x| x.is_supported_list_arithmetic_input())
                    {
                        polars_bail!(
                            InvalidOperation:
                            "cannot {} two list columns with non-numeric inner types: (left: {}, right: {})",
                            op.0.name(), l, r,
                        );
                    }
                    (BinaryOpApplyType::ListToList, l)
                },
                (list_dtype @ DataType::List(_), x) if x.is_supported_list_arithmetic_input() => {
                    ensure_list_type_at_all_levels(list_dtype)?;
                    (BinaryOpApplyType::ListToPrimitive, list_dtype)
                },
                (x, list_dtype @ DataType::List(_)) if x.is_supported_list_arithmetic_input() => {
                    ensure_list_type_at_all_levels(list_dtype)?;
                    (BinaryOpApplyType::PrimitiveToList, list_dtype)
                },
                (l, r) => polars_bail!(
                    InvalidOperation:
                    "{} operation not supported for dtypes: {} != {}",
                    op.0.name(), l, r,
                ),
            };

            let output_dtype = output_dtype.cast_leaf(output_primitive_dtype.clone());

            let (broadcast, output_len) = match (len_lhs, len_rhs) {
                (l, r) if l == r => (Broadcast::NoBroadcast, l),
                (1, v) => (Broadcast::Left, v),
                (v, 1) => (Broadcast::Right, v),
                (l, r) => polars_bail!(
                    ShapeMismatch:
                    "cannot {} two columns of differing lengths: {} != {}",
                    op.0.name(), l, r
                ),
            };

            let DataType::List(output_inner_dtype) = &output_dtype else {
                unreachable!()
            };

            // # NULL semantics
            // * [[1, 2]] (List[List[Int64]]) + NULL (Int64) => [[NULL, NULL]]
            //   * Essentially as if the NULL primitive was added to every primitive in the row of the list column.
            // * NULL (List[Int64]) + 1   (Int64)       => NULL
            // * NULL (List[Int64]) + [1] (List[Int64]) => NULL

            if output_len == 0
                || (matches!(
                    &op_apply_type,
                    BinaryOpApplyType::ListToList | BinaryOpApplyType::ListToPrimitive
                ) && validity_lhs.as_ref().map_or(false, |x| x.set_bits() == 0))
                || (matches!(
                    &op_apply_type,
                    BinaryOpApplyType::ListToList | BinaryOpApplyType::PrimitiveToList
                ) && validity_rhs.as_ref().map_or(false, |x| x.set_bits() == 0))
            {
                return Ok(Either::Right(ListChunked::full_null_with_dtype(
                    output_name.clone(),
                    output_len,
                    output_inner_dtype.as_ref(),
                )));
            }

            // At this point:
            // * All unit length list columns have a valid outer value.

            // The outer validity is just the validity of any non-broadcasting lists.
            let outer_validity = match (&op_apply_type, &broadcast, validity_lhs, validity_rhs) {
                // Both lists with same length, we combine the validity.
                (BinaryOpApplyType::ListToList, Broadcast::NoBroadcast, l, r) => {
                    combine_validities_and(l.as_ref(), r.as_ref())
                },
                // Match all other combinations that have non-broadcasting lists.
                (
                    BinaryOpApplyType::ListToList | BinaryOpApplyType::ListToPrimitive,
                    Broadcast::NoBroadcast | Broadcast::Right,
                    v,
                    _,
                )
                | (
                    BinaryOpApplyType::ListToList | BinaryOpApplyType::PrimitiveToList,
                    Broadcast::NoBroadcast | Broadcast::Left,
                    _,
                    v,
                ) => v,
                _ => None,
            }
            .unwrap_or_else(|| Bitmap::new_with_value(true, output_len));

            Ok(Either::Left(Self {
                op,
                output_name,
                op_apply_type,
                broadcast,
                output_dtype: output_dtype.clone(),
                output_primitive_dtype,
                output_len,
                outer_validity,
                data_lhs,
                data_rhs,
                list_to_prim_lhs: None,
                swapped: false,
            }))
        }

        pub(super) fn finish(mut self) -> PolarsResult<ListChunked> {
            // We have physical codepaths for a subset of the possible combinations of broadcasting and
            // column types. The remaining combinations are handled by dispatching to the physical
            // codepaths after operand swapping and/or materialized broadcasting.
            //
            // # Physical impl table
            // Legend
            // * |  N  | // impl "N"
            // * | [N] | // dispatches to impl "N"
            //
            //                  |  L  |  N  |  R  | // Broadcast (L)eft, (N)oBroadcast, (R)ight
            // ListToList       | [1] |  0  |  1  |
            // ListToPrimitive  | [2] |  2  |  3  | // list broadcasting just materializes and dispatches to NoBroadcast
            // PrimitiveToList  | [3] | [2] | [2] |

            self.swapped = true;

            match (&self.op_apply_type, &self.broadcast) {
                (BinaryOpApplyType::ListToList, Broadcast::NoBroadcast)
                | (BinaryOpApplyType::ListToList, Broadcast::Right)
                | (BinaryOpApplyType::ListToPrimitive, Broadcast::NoBroadcast)
                | (BinaryOpApplyType::ListToPrimitive, Broadcast::Right) => {
                    self.swapped = false;
                    self._finish_impl_dispatch()
                },
                (BinaryOpApplyType::ListToList, Broadcast::Left) => {
                    self.broadcast = Broadcast::Right;

                    std::mem::swap(&mut self.data_lhs, &mut self.data_rhs);
                    self._finish_impl_dispatch()
                },
                (BinaryOpApplyType::ListToPrimitive, Broadcast::Left) => {
                    self.list_to_prim_lhs
                        .replace(Self::materialize_broadcasted_list(
                            &mut self.data_lhs,
                            self.output_len,
                            &self.output_primitive_dtype,
                        ));

                    self.broadcast = Broadcast::NoBroadcast;

                    // This does not swap! We are just dispatching to `NoBroadcast`
                    // after materializing the broadcasted list array.
                    self.swapped = false;
                    self._finish_impl_dispatch()
                },
                (BinaryOpApplyType::PrimitiveToList, Broadcast::NoBroadcast) => {
                    self.op_apply_type = BinaryOpApplyType::ListToPrimitive;

                    std::mem::swap(&mut self.data_lhs, &mut self.data_rhs);
                    self._finish_impl_dispatch()
                },
                (BinaryOpApplyType::PrimitiveToList, Broadcast::Right) => {
                    // We materialize the list columns with `new_from_index`, as otherwise we'd have to
                    // implement logic that broadcasts the offsets and validities across multiple levels
                    // of nesting. But we will re-use the materialized memory to store the result.

                    self.list_to_prim_lhs
                        .replace(Self::materialize_broadcasted_list(
                            &mut self.data_rhs,
                            self.output_len,
                            &self.output_primitive_dtype,
                        ));

                    self.op_apply_type = BinaryOpApplyType::ListToPrimitive;
                    self.broadcast = Broadcast::NoBroadcast;

                    std::mem::swap(&mut self.data_lhs, &mut self.data_rhs);
                    self._finish_impl_dispatch()
                },
                (BinaryOpApplyType::PrimitiveToList, Broadcast::Left) => {
                    self.op_apply_type = BinaryOpApplyType::ListToPrimitive;
                    self.broadcast = Broadcast::Right;

                    std::mem::swap(&mut self.data_lhs, &mut self.data_rhs);
                    self._finish_impl_dispatch()
                },
            }
        }

        fn _finish_impl_dispatch(&mut self) -> PolarsResult<ListChunked> {
            let output_dtype = self.output_dtype.clone();
            let output_len = self.output_len;

            let prim_lhs = self
                .data_lhs
                .2
                .get_leaf_array()
                .cast(&self.output_primitive_dtype)?
                .rechunk();
            let prim_rhs = self
                .data_rhs
                .2
                .get_leaf_array()
                .cast(&self.output_primitive_dtype)?
                .rechunk();

            debug_assert_eq!(prim_lhs.dtype(), prim_rhs.dtype());
            let prim_dtype = prim_lhs.dtype();
            debug_assert_eq!(prim_dtype, &self.output_primitive_dtype);

            // Safety: Leaf dtypes have been checked to be numeric by `try_new()`
            let out = with_match_physical_numeric_polars_type!(&prim_dtype, |$T| {
                self._finish_impl::<$T>(prim_lhs, prim_rhs)
            })?;

            debug_assert_eq!(out.dtype(), &output_dtype);
            assert_eq!(out.len(), output_len);

            Ok(out)
        }

        /// Internal use only - contains physical impls.
        fn _finish_impl<T: PolarsNumericType>(
            &mut self,
            prim_s_lhs: Series,
            prim_s_rhs: Series,
        ) -> PolarsResult<ListChunked>
        where
            T::Native: PlNumArithmetic,
            PrimitiveArray<T::Native>:
                polars_compute::comparisons::TotalEqKernel<Scalar = T::Native>,
            T::Native: Zero + IsFloat,
        {
            #[inline(never)]
            fn check_mismatch_pos(
                mismatch_pos: usize,
                offsets_lhs: &OffsetsBuffer<i64>,
                offsets_rhs: &OffsetsBuffer<i64>,
            ) -> PolarsResult<()> {
                if mismatch_pos < offsets_lhs.len_proxy() {
                    // RHS could be broadcasted
                    let len_r = offsets_rhs.length_at(if offsets_rhs.len_proxy() == 1 {
                        0
                    } else {
                        mismatch_pos
                    });
                    polars_bail!(
                        ShapeMismatch:
                        "list lengths differed at index {}: {} != {}",
                        mismatch_pos,
                        offsets_lhs.length_at(mismatch_pos), len_r
                    )
                }
                Ok(())
            }

            let mut arr_lhs = {
                let ca: &ChunkedArray<T> = prim_s_lhs.as_ref().as_ref();
                assert_eq!(ca.chunks().len(), 1);
                ca.downcast_get(0).unwrap().clone()
            };

            let mut arr_rhs = {
                let ca: &ChunkedArray<T> = prim_s_rhs.as_ref().as_ref();
                assert_eq!(ca.chunks().len(), 1);
                ca.downcast_get(0).unwrap().clone()
            };

            match (&self.op_apply_type, &self.broadcast) {
                // We skip for this because it dispatches to `ArithmeticKernel`, which handles the
                // validities for us.
                (BinaryOpApplyType::ListToPrimitive, Broadcast::Right) => {},
                _ if self.list_to_prim_lhs.is_none() => {
                    self.op.0.prepare_numeric_op_side_validities::<T>(
                        &mut arr_lhs,
                        &mut arr_rhs,
                        self.swapped,
                    )
                },
                (BinaryOpApplyType::ListToPrimitive, Broadcast::NoBroadcast) => {
                    // `self.list_to_prim_lhs` is `Some(_)`, this is handled later.
                },
                _ => unreachable!(),
            }

            //
            // General notes
            // * Lists can be:
            //   * Sliced, in which case the primitive/leaf array needs to be indexed starting from an
            //     offset instead of 0.
            //   * Masked, in which case the masked rows are permitted to have non-matching widths.
            //

            let out = match (&self.op_apply_type, &self.broadcast) {
                (BinaryOpApplyType::ListToList, Broadcast::NoBroadcast) => {
                    let offsets_lhs = &self.data_lhs.0[0];
                    let offsets_rhs = &self.data_rhs.0[0];

                    assert_eq!(offsets_lhs.len_proxy(), offsets_rhs.len_proxy());

                    // Output primitive (and optional validity) are aligned to the LHS input.
                    let n_values = arr_lhs.len();
                    let mut out_vec: Vec<T::Native> = Vec::with_capacity(n_values);
                    let out_ptr: *mut T::Native = out_vec.as_mut_ptr();

                    // Counter that stops being incremented at the first row position with mismatching
                    // list lengths.
                    let mut mismatch_pos = 0;

                    with_match_pl_num_arith!(&self.op.0, self.swapped, |$OP| {
                        for (i, ((lhs_start, lhs_len), (rhs_start, rhs_len))) in offsets_lhs
                            .offset_and_length_iter()
                            .zip(offsets_rhs.offset_and_length_iter())
                            .enumerate()
                        {
                            if
                                (mismatch_pos == i)
                                & (
                                    (lhs_len == rhs_len)
                                    | unsafe { !self.outer_validity.get_bit_unchecked(i) }
                                )
                            {
                                mismatch_pos += 1;
                            }

                            // Both sides are lists, we restrict the index to the min length to avoid
                            // OOB memory access.
                            let len: usize = lhs_len.min(rhs_len);

                            for i in 0..len {
                                let l_idx = i + lhs_start;
                                let r_idx = i + rhs_start;

                                let l = unsafe { arr_lhs.value_unchecked(l_idx) };
                                let r = unsafe { arr_rhs.value_unchecked(r_idx) };
                                let v = $OP(l, r);

                                unsafe { out_ptr.add(l_idx).write(v) };
                            }
                        }
                    });

                    check_mismatch_pos(mismatch_pos, offsets_lhs, offsets_rhs)?;

                    unsafe { out_vec.set_len(n_values) };

                    /// Reduce monomorphization
                    #[inline(never)]
                    fn combine_validities_list_to_list_no_broadcast(
                        offsets_lhs: &OffsetsBuffer<i64>,
                        offsets_rhs: &OffsetsBuffer<i64>,
                        validity_lhs: Option<&Bitmap>,
                        validity_rhs: Option<&Bitmap>,
                        len_lhs: usize,
                    ) -> Option<Bitmap> {
                        match (validity_lhs, validity_rhs) {
                            (Some(l), Some(r)) => Some((l.clone().make_mut(), r)),
                            (Some(v), None) => return Some(v.clone()),
                            (None, Some(v)) => {
                                Some((Bitmap::new_with_value(true, len_lhs).make_mut(), v))
                            },
                            (None, None) => None,
                        }
                        .map(|(mut validity_out, validity_rhs)| {
                            for ((lhs_start, lhs_len), (rhs_start, rhs_len)) in offsets_lhs
                                .offset_and_length_iter()
                                .zip(offsets_rhs.offset_and_length_iter())
                            {
                                let len: usize = lhs_len.min(rhs_len);

                                for i in 0..len {
                                    let l_idx = i + lhs_start;
                                    let r_idx = i + rhs_start;

                                    let l_valid = unsafe { validity_out.get_unchecked(l_idx) };
                                    let r_valid = unsafe { validity_rhs.get_bit_unchecked(r_idx) };
                                    let is_valid = l_valid & r_valid;

                                    // Size and alignment of validity vec are based on LHS.
                                    unsafe { validity_out.set_unchecked(l_idx, is_valid) };
                                }
                            }

                            validity_out.freeze()
                        })
                    }

                    let leaf_validity = combine_validities_list_to_list_no_broadcast(
                        offsets_lhs,
                        offsets_rhs,
                        arr_lhs.validity(),
                        arr_rhs.validity(),
                        arr_lhs.len(),
                    );

                    let arr =
                        PrimitiveArray::<T::Native>::from_vec(out_vec).with_validity(leaf_validity);

                    let (offsets, validities, _) = std::mem::take(&mut self.data_lhs);
                    assert_eq!(offsets.len(), 1);

                    self.finish_offsets_and_validities(Box::new(arr), offsets, validities)
                },
                (BinaryOpApplyType::ListToList, Broadcast::Right) => {
                    let offsets_lhs = &self.data_lhs.0[0];
                    let offsets_rhs = &self.data_rhs.0[0];

                    // Output primitive (and optional validity) are aligned to the LHS input.
                    let n_values = arr_lhs.len();
                    let mut out_vec: Vec<T::Native> = Vec::with_capacity(n_values);
                    let out_ptr: *mut T::Native = out_vec.as_mut_ptr();

                    assert_eq!(offsets_rhs.len_proxy(), 1);
                    let rhs_start = *offsets_rhs.first() as usize;
                    let width = offsets_rhs.range() as usize;

                    let mut mismatch_pos = 0;

                    with_match_pl_num_arith!(&self.op.0, self.swapped, |$OP| {
                        for (i, (lhs_start, lhs_len)) in offsets_lhs.offset_and_length_iter().enumerate() {
                            if ((lhs_len == width) & (mismatch_pos == i))
                                | unsafe { !self.outer_validity.get_bit_unchecked(i) }
                            {
                                mismatch_pos += 1;
                            }

                            let len: usize = lhs_len.min(width);

                            for i in 0..len {
                                let l_idx = i + lhs_start;
                                let r_idx = i + rhs_start;

                                let l = unsafe { arr_lhs.value_unchecked(l_idx) };
                                let r = unsafe { arr_rhs.value_unchecked(r_idx) };
                                let v = $OP(l, r);

                                unsafe {
                                    out_ptr.add(l_idx).write(v);
                                }
                            }
                        }
                    });

                    check_mismatch_pos(mismatch_pos, offsets_lhs, offsets_rhs)?;

                    unsafe { out_vec.set_len(n_values) };

                    #[inline(never)]
                    fn combine_validities_list_to_list_broadcast_right(
                        offsets_lhs: &OffsetsBuffer<i64>,
                        validity_lhs: Option<&Bitmap>,
                        validity_rhs: Option<&Bitmap>,
                        len_lhs: usize,
                        width: usize,
                        rhs_start: usize,
                    ) -> Option<Bitmap> {
                        match (validity_lhs, validity_rhs) {
                            (Some(l), Some(r)) => Some((l.clone().make_mut(), r)),
                            (Some(v), None) => return Some(v.clone()),
                            (None, Some(v)) => {
                                Some((Bitmap::new_with_value(true, len_lhs).make_mut(), v))
                            },
                            (None, None) => None,
                        }
                        .map(|(mut validity_out, validity_rhs)| {
                            for (lhs_start, lhs_len) in offsets_lhs.offset_and_length_iter() {
                                let len: usize = lhs_len.min(width);

                                for i in 0..len {
                                    let l_idx = i + lhs_start;
                                    let r_idx = i + rhs_start;

                                    let l_valid = unsafe { validity_out.get_unchecked(l_idx) };
                                    let r_valid = unsafe { validity_rhs.get_bit_unchecked(r_idx) };
                                    let is_valid = l_valid & r_valid;

                                    // Size and alignment of validity vec are based on LHS.
                                    unsafe { validity_out.set_unchecked(l_idx, is_valid) };
                                }
                            }

                            validity_out.freeze()
                        })
                    }

                    let leaf_validity = combine_validities_list_to_list_broadcast_right(
                        offsets_lhs,
                        arr_lhs.validity(),
                        arr_rhs.validity(),
                        arr_lhs.len(),
                        width,
                        rhs_start,
                    );

                    let arr =
                        PrimitiveArray::<T::Native>::from_vec(out_vec).with_validity(leaf_validity);

                    let (offsets, validities, _) = std::mem::take(&mut self.data_lhs);
                    assert_eq!(offsets.len(), 1);

                    self.finish_offsets_and_validities(Box::new(arr), offsets, validities)
                },
                (BinaryOpApplyType::ListToPrimitive, Broadcast::NoBroadcast)
                    if self.list_to_prim_lhs.is_none() =>
                {
                    let offsets_lhs = self.data_lhs.0.as_slice();

                    // Notes
                    // * Primitive indexing starts from 0
                    // * Output is aligned to LHS array

                    let n_values = arr_lhs.len();
                    let mut out_vec = Vec::<T::Native>::with_capacity(n_values);
                    let out_ptr = out_vec.as_mut_ptr();

                    with_match_pl_num_arith!(&self.op.0, self.swapped, |$OP| {
                        for (i, l_range) in OffsetsBuffer::<i64>::leaf_ranges_iter(offsets_lhs).enumerate()
                        {
                            let r = unsafe { arr_rhs.value_unchecked(i) };
                            for l_idx in l_range {
                                unsafe {
                                    let l = arr_lhs.value_unchecked(l_idx);
                                    let v = $OP(l, r);
                                    out_ptr.add(l_idx).write(v);
                                }
                            }
                        }
                    });

                    unsafe { out_vec.set_len(n_values) }

                    let leaf_validity = combine_validities_list_to_primitive_no_broadcast(
                        offsets_lhs,
                        arr_lhs.validity(),
                        arr_rhs.validity(),
                        arr_lhs.len(),
                    );

                    let arr =
                        PrimitiveArray::<T::Native>::from_vec(out_vec).with_validity(leaf_validity);

                    let (offsets, validities, _) = std::mem::take(&mut self.data_lhs);
                    self.finish_offsets_and_validities(Box::new(arr), offsets, validities)
                },
                // If we are dispatched here, it means that the LHS array is a unique allocation created
                // after a unit-length list column was broadcasted, so this codepath mutably stores the
                // results back into the LHS array to save memory.
                (BinaryOpApplyType::ListToPrimitive, Broadcast::NoBroadcast) => {
                    let offsets_lhs = self.data_lhs.0.as_slice();

                    let (mut arr, n_values) = Option::take(&mut self.list_to_prim_lhs).unwrap();
                    let arr = arr
                        .as_any_mut()
                        .downcast_mut::<PrimitiveArray<T::Native>>()
                        .unwrap();
                    let mut arr_lhs = std::mem::take(arr);

                    self.op.0.prepare_numeric_op_side_validities::<T>(
                        &mut arr_lhs,
                        &mut arr_rhs,
                        self.swapped,
                    );

                    let arr_lhs_mut_slice = arr_lhs.get_mut_values().unwrap();
                    assert_eq!(arr_lhs_mut_slice.len(), n_values);

                    with_match_pl_num_arith!(&self.op.0, self.swapped, |$OP| {
                        for (i, l_range) in OffsetsBuffer::<i64>::leaf_ranges_iter(offsets_lhs).enumerate()
                        {
                            let r = unsafe { arr_rhs.value_unchecked(i) };
                            for l_idx in l_range {
                                unsafe {
                                    let l = arr_lhs_mut_slice.get_unchecked_mut(l_idx);
                                    *l = $OP(*l, r);
                                }
                            }
                        }
                    });

                    let leaf_validity = combine_validities_list_to_primitive_no_broadcast(
                        offsets_lhs,
                        arr_lhs.validity(),
                        arr_rhs.validity(),
                        arr_lhs.len(),
                    );

                    let arr = arr_lhs.with_validity(leaf_validity);

                    let (offsets, validities, _) = std::mem::take(&mut self.data_lhs);
                    self.finish_offsets_and_validities(Box::new(arr), offsets, validities)
                },
                (BinaryOpApplyType::ListToPrimitive, Broadcast::Right) => {
                    assert_eq!(arr_rhs.len(), 1);

                    let Some(r) = (unsafe { arr_rhs.get_unchecked(0) }) else {
                        // RHS is single primitive NULL, create the result by setting the leaf validity to all-NULL.
                        let (offsets, validities, _) = std::mem::take(&mut self.data_lhs);
                        return Ok(self.finish_offsets_and_validities(
                            Box::new(
                                arr_lhs.clone().with_validity(Some(Bitmap::new_with_value(
                                    false,
                                    arr_lhs.len(),
                                ))),
                            ),
                            offsets,
                            validities,
                        ));
                    };

                    let arr = self
                        .op
                        .0
                        .apply_array_to_scalar::<T>(arr_lhs, r, self.swapped);
                    let (offsets, validities, _) = std::mem::take(&mut self.data_lhs);

                    self.finish_offsets_and_validities(Box::new(arr), offsets, validities)
                },
                v @ (BinaryOpApplyType::PrimitiveToList, Broadcast::Right)
                | v @ (BinaryOpApplyType::ListToList, Broadcast::Left)
                | v @ (BinaryOpApplyType::ListToPrimitive, Broadcast::Left)
                | v @ (BinaryOpApplyType::PrimitiveToList, Broadcast::Left)
                | v @ (BinaryOpApplyType::PrimitiveToList, Broadcast::NoBroadcast) => {
                    if cfg!(debug_assertions) {
                        panic!("operation was not re-written: {:?}", v)
                    } else {
                        unreachable!()
                    }
                },
            };

            Ok(out)
        }

        /// Construct the result `ListChunked` from the leaf array and the offsets/validities of every
        /// level.
        fn finish_offsets_and_validities(
            &mut self,
            leaf_array: Box<dyn Array>,
            offsets: Vec<OffsetsBuffer<i64>>,
            validities: Vec<Option<Bitmap>>,
        ) -> ListChunked {
            assert!(!offsets.is_empty());
            assert_eq!(offsets.len(), validities.len());
            let mut results = leaf_array;

            let mut iter = offsets.into_iter().zip(validities).rev();

            while iter.len() > 1 {
                let (offsets, validity) = iter.next().unwrap();
                let dtype = LargeListArray::default_datatype(results.dtype().clone());
                results = Box::new(LargeListArray::new(dtype, offsets, results, validity));
            }

            // The combined outer validity is pre-computed during `try_new()`
            let (offsets, _) = iter.next().unwrap();
            let validity = std::mem::take(&mut self.outer_validity);
            let dtype = LargeListArray::default_datatype(results.dtype().clone());
            let results = LargeListArray::new(dtype, offsets, results, Some(validity));

            ListChunked::with_chunk(std::mem::take(&mut self.output_name), results)
        }

        fn materialize_broadcasted_list(
            side_data: &mut (Vec<OffsetsBuffer<i64>>, Vec<Option<Bitmap>>, Series),
            output_len: usize,
            output_primitive_dtype: &DataType,
        ) -> (Box<dyn Array>, usize) {
            let s = &side_data.2;
            assert_eq!(s.len(), 1);

            let expected_n_values = {
                let offsets = s.list_offsets_and_validities_recursive().0;
                output_len * OffsetsBuffer::<i64>::leaf_full_start_end(&offsets).len()
            };

            let ca = s.list().unwrap();
            // Remember to cast the leaf primitives to the supertype.
            let ca = ca
                .cast(&ca.dtype().cast_leaf(output_primitive_dtype.clone()))
                .unwrap();
            assert!(output_len > 1); // In case there is a fast-path that doesn't give us owned data.
            let ca = ca.new_from_index(0, output_len).rechunk();

            let s = ca.into_series();

            *side_data = {
                let (a, b) = s.list_offsets_and_validities_recursive();
                // `Series::default()`: This field in the tuple is no longer used.
                (a, b, Series::default())
            };

            let n_values = OffsetsBuffer::<i64>::leaf_full_start_end(&side_data.0).len();
            assert_eq!(n_values, expected_n_values);

            let mut s = s.get_leaf_array();
            let v = unsafe { s.chunks_mut() };

            assert_eq!(v.len(), 1);
            (v.swap_remove(0), n_values)
        }
    }

    /// Used in 2 places, so it's outside here.
    #[inline(never)]
    fn combine_validities_list_to_primitive_no_broadcast(
        offsets_lhs: &[OffsetsBuffer<i64>],
        validity_lhs: Option<&Bitmap>,
        validity_rhs: Option<&Bitmap>,
        len_lhs: usize,
    ) -> Option<Bitmap> {
        match (validity_lhs, validity_rhs) {
            (Some(l), Some(r)) => Some((l.clone().make_mut(), r)),
            (Some(v), None) => return Some(v.clone()),
            // Materialize a full-true validity to re-use the codepath, as we still
            // need to spread the bits from the RHS to the correct positions.
            (None, Some(v)) => Some((Bitmap::new_with_value(true, len_lhs).make_mut(), v)),
            (None, None) => None,
        }
        .map(|(mut validity_out, validity_rhs)| {
            for (i, l_range) in OffsetsBuffer::<i64>::leaf_ranges_iter(offsets_lhs).enumerate() {
                let r_valid = unsafe { validity_rhs.get_bit_unchecked(i) };
                for l_idx in l_range {
                    let l_valid = unsafe { validity_out.get_unchecked(l_idx) };
                    let is_valid = l_valid & r_valid;

                    // Size and alignment of validity vec are based on LHS.
                    unsafe { validity_out.set_unchecked(l_idx, is_valid) };
                }
            }

            validity_out.freeze()
        })
    }
}