polars_core/series/ops/
reshape.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
use std::borrow::Cow;

use arrow::array::*;
use arrow::bitmap::Bitmap;
use arrow::legacy::kernels::list::array_to_unit_list;
use arrow::offset::{Offsets, OffsetsBuffer};
use polars_error::{polars_bail, polars_ensure, PolarsResult};
use polars_utils::format_tuple;

use crate::chunked_array::builder::get_list_builder;
use crate::datatypes::{DataType, ListChunked};
use crate::prelude::{IntoSeries, Series, *};

fn reshape_fast_path(name: PlSmallStr, s: &Series) -> Series {
    let mut ca = ListChunked::from_chunk_iter(
        name,
        s.chunks().iter().map(|arr| array_to_unit_list(arr.clone())),
    );

    ca.set_inner_dtype(s.dtype().clone());
    ca.set_fast_explode();
    ca.into_series()
}

impl Series {
    /// Recurse nested types until we are at the leaf array.
    pub fn get_leaf_array(&self) -> Series {
        let s = self;
        match s.dtype() {
            #[cfg(feature = "dtype-array")]
            DataType::Array(dtype, _) => {
                let ca = s.array().unwrap();
                let chunks = ca
                    .downcast_iter()
                    .map(|arr| arr.values().clone())
                    .collect::<Vec<_>>();
                // Safety: guarded by the type system
                unsafe { Series::from_chunks_and_dtype_unchecked(s.name().clone(), chunks, dtype) }
                    .get_leaf_array()
            },
            DataType::List(dtype) => {
                let ca = s.list().unwrap();
                let chunks = ca
                    .downcast_iter()
                    .map(|arr| arr.values().clone())
                    .collect::<Vec<_>>();
                // Safety: guarded by the type system
                unsafe { Series::from_chunks_and_dtype_unchecked(s.name().clone(), chunks, dtype) }
                    .get_leaf_array()
            },
            _ => s.clone(),
        }
    }

    /// TODO: Move this somewhere else?
    pub fn list_offsets_and_validities_recursive(
        &self,
    ) -> (Vec<OffsetsBuffer<i64>>, Vec<Option<Bitmap>>) {
        let mut offsets = vec![];
        let mut validities = vec![];

        let mut s = self.rechunk();

        while let DataType::List(_) = s.dtype() {
            let ca = s.list().unwrap();
            offsets.push(ca.offsets().unwrap());
            validities.push(ca.rechunk_validity());
            s = ca.get_inner();
        }

        (offsets, validities)
    }

    /// For ListArrays, recursively normalizes the offsets to begin from 0, and
    /// slices excess length from the values array.
    pub fn list_rechunk_and_trim_to_normalized_offsets(&self) -> Self {
        if let Some(ca) = self.try_list() {
            ca.rechunk_and_trim_to_normalized_offsets().into_series()
        } else {
            self.rechunk()
        }
    }

    /// Convert the values of this Series to a ListChunked with a length of 1,
    /// so a Series of `[1, 2, 3]` becomes `[[1, 2, 3]]`.
    pub fn implode(&self) -> PolarsResult<ListChunked> {
        let s = self;
        let s = s.rechunk();
        let values = s.array_ref(0);

        let offsets = vec![0i64, values.len() as i64];
        let inner_type = s.dtype();

        let dtype = ListArray::<i64>::default_datatype(values.dtype().clone());

        // SAFETY: offsets are correct.
        let arr = unsafe {
            ListArray::new(
                dtype,
                Offsets::new_unchecked(offsets).into(),
                values.clone(),
                None,
            )
        };

        let mut ca = ListChunked::with_chunk(s.name().clone(), arr);
        unsafe { ca.to_logical(inner_type.clone()) };
        ca.set_fast_explode();
        Ok(ca)
    }

    #[cfg(feature = "dtype-array")]
    pub fn reshape_array(&self, dimensions: &[ReshapeDimension]) -> PolarsResult<Series> {
        polars_ensure!(
            !dimensions.is_empty(),
            InvalidOperation: "at least one dimension must be specified"
        );

        let leaf_array = self.get_leaf_array().rechunk();
        let size = leaf_array.len();

        let mut total_dim_size = 1;
        let mut num_infers = 0;
        for &dim in dimensions {
            match dim {
                ReshapeDimension::Infer => num_infers += 1,
                ReshapeDimension::Specified(dim) => total_dim_size *= dim.get() as usize,
            }
        }

        polars_ensure!(num_infers <= 1, InvalidOperation: "can only specify one inferred dimension");

        if size == 0 {
            polars_ensure!(
                num_infers > 0 || total_dim_size == 0,
                InvalidOperation: "cannot reshape empty array into shape without zero dimension: {}",
                format_tuple!(dimensions),
            );

            let mut prev_arrow_dtype = leaf_array
                .dtype()
                .to_physical()
                .to_arrow(CompatLevel::newest());
            let mut prev_dtype = leaf_array.dtype().clone();
            let mut prev_array = leaf_array.chunks()[0].clone();

            // @NOTE: We need to collect the iterator here because it is lazily processed.
            let mut current_length = dimensions[0].get_or_infer(0);
            let len_iter = dimensions[1..]
                .iter()
                .map(|d| {
                    let length = current_length as usize;
                    current_length *= d.get_or_infer(0);
                    length
                })
                .collect::<Vec<_>>();

            // We pop the outer dimension as that is the height of the series.
            for (dim, length) in dimensions[1..].iter().zip(len_iter).rev() {
                // Infer dimension if needed
                let dim = dim.get_or_infer(0);
                prev_arrow_dtype = prev_arrow_dtype.to_fixed_size_list(dim as usize, true);
                prev_dtype = DataType::Array(Box::new(prev_dtype), dim as usize);

                prev_array =
                    FixedSizeListArray::new(prev_arrow_dtype.clone(), length, prev_array, None)
                        .boxed();
            }

            return Ok(unsafe {
                Series::from_chunks_and_dtype_unchecked(
                    leaf_array.name().clone(),
                    vec![prev_array],
                    &prev_dtype,
                )
            });
        }

        polars_ensure!(
            total_dim_size > 0,
            InvalidOperation: "cannot reshape non-empty array into shape containing a zero dimension: {}",
            format_tuple!(dimensions)
        );

        polars_ensure!(
            size % total_dim_size == 0,
            InvalidOperation: "cannot reshape array of size {} into shape {}", size, format_tuple!(dimensions)
        );

        let leaf_array = leaf_array.rechunk();
        let mut prev_arrow_dtype = leaf_array
            .dtype()
            .to_physical()
            .to_arrow(CompatLevel::newest());
        let mut prev_dtype = leaf_array.dtype().clone();
        let mut prev_array = leaf_array.chunks()[0].clone();

        // We pop the outer dimension as that is the height of the series.
        for dim in dimensions[1..].iter().rev() {
            // Infer dimension if needed
            let dim = dim.get_or_infer((size / total_dim_size) as u64);
            prev_arrow_dtype = prev_arrow_dtype.to_fixed_size_list(dim as usize, true);
            prev_dtype = DataType::Array(Box::new(prev_dtype), dim as usize);

            prev_array = FixedSizeListArray::new(
                prev_arrow_dtype.clone(),
                prev_array.len() / dim as usize,
                prev_array,
                None,
            )
            .boxed();
        }
        Ok(unsafe {
            Series::from_chunks_and_dtype_unchecked(
                leaf_array.name().clone(),
                vec![prev_array],
                &prev_dtype,
            )
        })
    }

    pub fn reshape_list(&self, dimensions: &[ReshapeDimension]) -> PolarsResult<Series> {
        polars_ensure!(
            !dimensions.is_empty(),
            InvalidOperation: "at least one dimension must be specified"
        );

        let s = self;
        let s = if let DataType::List(_) = s.dtype() {
            Cow::Owned(s.explode()?)
        } else {
            Cow::Borrowed(s)
        };

        let s_ref = s.as_ref();

        // let dimensions = dimensions.to_vec();

        match dimensions.len() {
            1 => {
                polars_ensure!(
                    dimensions[0].get().is_none_or( |dim| dim as usize == s_ref.len()),
                    InvalidOperation: "cannot reshape len {} into shape {:?}", s_ref.len(), dimensions,
                );
                Ok(s_ref.clone())
            },
            2 => {
                let rows = dimensions[0];
                let cols = dimensions[1];

                if s_ref.len() == 0_usize {
                    if rows.get_or_infer(0) == 0 && cols.get_or_infer(0) <= 1 {
                        let s = reshape_fast_path(s.name().clone(), s_ref);
                        return Ok(s);
                    } else {
                        polars_bail!(InvalidOperation: "cannot reshape len 0 into shape {}", format_tuple!(dimensions))
                    }
                }

                use ReshapeDimension as RD;
                // Infer dimension.

                let (rows, cols) = match (rows, cols) {
                    (RD::Infer, RD::Specified(cols)) if cols.get() >= 1 => {
                        (s_ref.len() as u64 / cols.get(), cols.get())
                    },
                    (RD::Specified(rows), RD::Infer) if rows.get() >= 1 => {
                        (rows.get(), s_ref.len() as u64 / rows.get())
                    },
                    (RD::Infer, RD::Infer) => (s_ref.len() as u64, 1u64),
                    (RD::Specified(rows), RD::Specified(cols)) => (rows.get(), cols.get()),
                    _ => polars_bail!(InvalidOperation: "reshape of non-zero list into zero list"),
                };

                // Fast path, we can create a unit list so we only allocate offsets.
                if rows as usize == s_ref.len() && cols == 1 {
                    let s = reshape_fast_path(s.name().clone(), s_ref);
                    return Ok(s);
                }

                polars_ensure!(
                    (rows*cols) as usize == s_ref.len() && rows >= 1 && cols >= 1,
                    InvalidOperation: "cannot reshape len {} into shape {:?}", s_ref.len(), dimensions,
                );

                let mut builder =
                    get_list_builder(s_ref.dtype(), s_ref.len(), rows as usize, s.name().clone());

                let mut offset = 0u64;
                for _ in 0..rows {
                    let row = s_ref.slice(offset as i64, cols as usize);
                    builder.append_series(&row).unwrap();
                    offset += cols;
                }
                Ok(builder.finish().into_series())
            },
            _ => {
                polars_bail!(InvalidOperation: "more than two dimensions not supported in reshaping to List.\n\nConsider reshaping to Array type.");
            },
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::prelude::*;

    #[test]
    fn test_to_list() -> PolarsResult<()> {
        let s = Series::new("a".into(), &[1, 2, 3]);

        let mut builder = get_list_builder(s.dtype(), s.len(), 1, s.name().clone());
        builder.append_series(&s).unwrap();
        let expected = builder.finish();

        let out = s.implode()?;
        assert!(expected.into_series().equals(&out.into_series()));

        Ok(())
    }

    #[test]
    fn test_reshape() -> PolarsResult<()> {
        let s = Series::new("a".into(), &[1, 2, 3, 4]);

        for (dims, list_len) in [
            (&[-1, 1], 4),
            (&[4, 1], 4),
            (&[2, 2], 2),
            (&[-1, 2], 2),
            (&[2, -1], 2),
        ] {
            let dims = dims
                .iter()
                .map(|&v| ReshapeDimension::new(v))
                .collect::<Vec<_>>();
            let out = s.reshape_list(&dims)?;
            assert_eq!(out.len(), list_len);
            assert!(matches!(out.dtype(), DataType::List(_)));
            assert_eq!(out.explode()?.len(), 4);
        }

        Ok(())
    }
}