1use std::borrow::Cow;
2
3use arrow::array::*;
4use arrow::bitmap::Bitmap;
5use arrow::offset::{Offsets, OffsetsBuffer};
6use polars_compute::gather::sublist::list::array_to_unit_list;
7use polars_error::{PolarsResult, polars_bail, polars_ensure};
8use polars_utils::format_tuple;
9
10use crate::chunked_array::builder::get_list_builder;
11use crate::datatypes::{DataType, ListChunked};
12use crate::prelude::{IntoSeries, Series, *};
13
14fn reshape_fast_path(name: PlSmallStr, s: &Series) -> Series {
15 let mut ca = ListChunked::from_chunk_iter(
16 name,
17 s.chunks().iter().map(|arr| array_to_unit_list(arr.clone())),
18 );
19
20 ca.set_inner_dtype(s.dtype().clone());
21 ca.set_fast_explode();
22 ca.into_series()
23}
24
25impl Series {
26 pub fn get_leaf_array(&self) -> Series {
28 let s = self;
29 match s.dtype() {
30 #[cfg(feature = "dtype-array")]
31 DataType::Array(dtype, _) => {
32 let ca = s.array().unwrap();
33 let chunks = ca
34 .downcast_iter()
35 .map(|arr| arr.values().clone())
36 .collect::<Vec<_>>();
37 unsafe { Series::from_chunks_and_dtype_unchecked(s.name().clone(), chunks, dtype) }
39 .get_leaf_array()
40 },
41 DataType::List(dtype) => {
42 let ca = s.list().unwrap();
43 let chunks = ca
44 .downcast_iter()
45 .map(|arr| arr.values().clone())
46 .collect::<Vec<_>>();
47 unsafe { Series::from_chunks_and_dtype_unchecked(s.name().clone(), chunks, dtype) }
49 .get_leaf_array()
50 },
51 _ => s.clone(),
52 }
53 }
54
55 pub fn list_offsets_and_validities_recursive(
57 &self,
58 ) -> (Vec<OffsetsBuffer<i64>>, Vec<Option<Bitmap>>) {
59 let mut offsets = vec![];
60 let mut validities = vec![];
61
62 let mut s = self.rechunk();
63
64 while let DataType::List(_) = s.dtype() {
65 let ca = s.list().unwrap();
66 offsets.push(ca.offsets().unwrap());
67 validities.push(ca.rechunk_validity());
68 s = ca.get_inner();
69 }
70
71 (offsets, validities)
72 }
73
74 pub fn implode(&self) -> PolarsResult<ListChunked> {
77 let s = self;
78 let s = s.rechunk();
79 let values = s.array_ref(0);
80
81 let offsets = vec![0i64, values.len() as i64];
82 let inner_type = s.dtype();
83
84 let dtype = ListArray::<i64>::default_datatype(values.dtype().clone());
85
86 let arr = unsafe {
88 ListArray::new(
89 dtype,
90 Offsets::new_unchecked(offsets).into(),
91 values.clone(),
92 None,
93 )
94 };
95
96 let mut ca = ListChunked::with_chunk(s.name().clone(), arr);
97 unsafe { ca.to_logical(inner_type.clone()) };
98 ca.set_fast_explode();
99 Ok(ca)
100 }
101
102 #[cfg(feature = "dtype-array")]
103 pub fn reshape_array(&self, dimensions: &[ReshapeDimension]) -> PolarsResult<Series> {
104 polars_ensure!(
105 !dimensions.is_empty(),
106 InvalidOperation: "at least one dimension must be specified"
107 );
108
109 let leaf_array = self
110 .trim_lists_to_normalized_offsets()
111 .as_ref()
112 .unwrap_or(self)
113 .get_leaf_array()
114 .rechunk();
115 let size = leaf_array.len();
116
117 let mut total_dim_size = 1;
118 let mut num_infers = 0;
119 for &dim in dimensions {
120 match dim {
121 ReshapeDimension::Infer => num_infers += 1,
122 ReshapeDimension::Specified(dim) => total_dim_size *= dim.get() as usize,
123 }
124 }
125
126 polars_ensure!(num_infers <= 1, InvalidOperation: "can only specify one inferred dimension");
127
128 if size == 0 {
129 polars_ensure!(
130 num_infers > 0 || total_dim_size == 0,
131 InvalidOperation: "cannot reshape empty array into shape without zero dimension: {}",
132 format_tuple!(dimensions),
133 );
134
135 let mut prev_arrow_dtype = leaf_array
136 .dtype()
137 .to_physical()
138 .to_arrow(CompatLevel::newest());
139 let mut prev_dtype = leaf_array.dtype().clone();
140 let mut prev_array = leaf_array.chunks()[0].clone();
141
142 let mut current_length = dimensions[0].get_or_infer(0);
144 let len_iter = dimensions[1..]
145 .iter()
146 .map(|d| {
147 let length = current_length as usize;
148 current_length *= d.get_or_infer(0);
149 length
150 })
151 .collect::<Vec<_>>();
152
153 for (dim, length) in dimensions[1..].iter().zip(len_iter).rev() {
155 let dim = dim.get_or_infer(0);
157 prev_arrow_dtype = prev_arrow_dtype.to_fixed_size_list(dim as usize, true);
158 prev_dtype = DataType::Array(Box::new(prev_dtype), dim as usize);
159
160 prev_array =
161 FixedSizeListArray::new(prev_arrow_dtype.clone(), length, prev_array, None)
162 .boxed();
163 }
164
165 return Ok(unsafe {
166 Series::from_chunks_and_dtype_unchecked(
167 leaf_array.name().clone(),
168 vec![prev_array],
169 &prev_dtype,
170 )
171 });
172 }
173
174 polars_ensure!(
175 total_dim_size > 0,
176 InvalidOperation: "cannot reshape non-empty array into shape containing a zero dimension: {}",
177 format_tuple!(dimensions)
178 );
179
180 polars_ensure!(
181 size.is_multiple_of(total_dim_size),
182 InvalidOperation: "cannot reshape array of size {} into shape {}", size, format_tuple!(dimensions)
183 );
184
185 let leaf_array = leaf_array.rechunk();
186 let mut prev_arrow_dtype = leaf_array
187 .dtype()
188 .to_physical()
189 .to_arrow(CompatLevel::newest());
190 let mut prev_dtype = leaf_array.dtype().clone();
191 let mut prev_array = leaf_array.chunks()[0].clone();
192 let inferred_size = (size / total_dim_size) as u64;
193 let outer_dimension = dimensions[0].get_or_infer(inferred_size);
194
195 for dim in dimensions[1..].iter().rev() {
197 let dim = dim.get_or_infer(inferred_size);
199 prev_arrow_dtype = prev_arrow_dtype.to_fixed_size_list(dim as usize, true);
200 prev_dtype = DataType::Array(Box::new(prev_dtype), dim as usize);
201
202 prev_array = FixedSizeListArray::new(
203 prev_arrow_dtype.clone(),
204 prev_array.len() / dim as usize,
205 prev_array,
206 None,
207 )
208 .boxed();
209 }
210
211 polars_ensure!(
212 prev_array.len() as u64 == outer_dimension,
213 InvalidOperation: "cannot reshape array of size {} into shape {}", size, format_tuple!(dimensions)
214 );
215
216 Ok(unsafe {
217 Series::from_chunks_and_dtype_unchecked(
218 leaf_array.name().clone(),
219 vec![prev_array],
220 &prev_dtype,
221 )
222 })
223 }
224
225 pub fn reshape_list(&self, dimensions: &[ReshapeDimension]) -> PolarsResult<Series> {
226 polars_ensure!(
227 !dimensions.is_empty(),
228 InvalidOperation: "at least one dimension must be specified"
229 );
230
231 let s = self;
232 let s = if let DataType::List(_) = s.dtype() {
233 Cow::Owned(s.explode(ExplodeOptions {
234 empty_as_null: false,
235 keep_nulls: true,
236 })?)
237 } else {
238 Cow::Borrowed(s)
239 };
240
241 let s_ref = s.as_ref();
242
243 match dimensions.len() {
246 1 => {
247 polars_ensure!(
248 dimensions[0].get().is_none_or( |dim| dim as usize == s_ref.len()),
249 InvalidOperation: "cannot reshape len {} into shape {:?}", s_ref.len(), dimensions,
250 );
251 Ok(s_ref.clone())
252 },
253 2 => {
254 let rows = dimensions[0];
255 let cols = dimensions[1];
256
257 if s_ref.is_empty() {
258 if rows.get_or_infer(0) == 0 && cols.get_or_infer(0) <= 1 {
259 let s = reshape_fast_path(s.name().clone(), s_ref);
260 return Ok(s);
261 } else {
262 polars_bail!(InvalidOperation: "cannot reshape len 0 into shape {}", format_tuple!(dimensions))
263 }
264 }
265
266 use ReshapeDimension as RD;
267 let (rows, cols) = match (rows, cols) {
270 (RD::Infer, RD::Specified(cols)) if cols.get() >= 1 => {
271 (s_ref.len() as u64 / cols.get(), cols.get())
272 },
273 (RD::Specified(rows), RD::Infer) if rows.get() >= 1 => {
274 (rows.get(), s_ref.len() as u64 / rows.get())
275 },
276 (RD::Infer, RD::Infer) => (s_ref.len() as u64, 1u64),
277 (RD::Specified(rows), RD::Specified(cols)) => (rows.get(), cols.get()),
278 _ => polars_bail!(InvalidOperation: "reshape of non-zero list into zero list"),
279 };
280
281 if rows as usize == s_ref.len() && cols == 1 {
283 let s = reshape_fast_path(s.name().clone(), s_ref);
284 return Ok(s);
285 }
286
287 polars_ensure!(
288 (rows*cols) as usize == s_ref.len() && rows >= 1 && cols >= 1,
289 InvalidOperation: "cannot reshape len {} into shape {:?}", s_ref.len(), dimensions,
290 );
291
292 let mut builder =
293 get_list_builder(s_ref.dtype(), s_ref.len(), rows as usize, s.name().clone());
294
295 let mut offset = 0u64;
296 for _ in 0..rows {
297 let row = s_ref.slice(offset as i64, cols as usize);
298 builder.append_series(&row).unwrap();
299 offset += cols;
300 }
301 Ok(builder.finish().into_series())
302 },
303 _ => {
304 polars_bail!(InvalidOperation: "more than two dimensions not supported in reshaping to List.\n\nConsider reshaping to Array type.");
305 },
306 }
307 }
308}
309
310#[cfg(test)]
311mod test {
312 use super::*;
313 use crate::prelude::*;
314
315 #[test]
316 fn test_to_list() -> PolarsResult<()> {
317 let s = Series::new("a".into(), &[1, 2, 3]);
318
319 let mut builder = get_list_builder(s.dtype(), s.len(), 1, s.name().clone());
320 builder.append_series(&s).unwrap();
321 let expected = builder.finish();
322
323 let out = s.implode()?;
324 assert!(expected.into_series().equals(&out.into_series()));
325
326 Ok(())
327 }
328
329 #[test]
330 fn test_reshape() -> PolarsResult<()> {
331 let s = Series::new("a".into(), &[1, 2, 3, 4]);
332
333 for (dims, list_len) in [
334 (&[-1, 1], 4),
335 (&[4, 1], 4),
336 (&[2, 2], 2),
337 (&[-1, 2], 2),
338 (&[2, -1], 2),
339 ] {
340 let dims = dims
341 .iter()
342 .map(|&v| ReshapeDimension::new(v))
343 .collect::<Vec<_>>();
344 let out = s.reshape_list(&dims)?;
345 assert_eq!(out.len(), list_len);
346 assert!(matches!(out.dtype(), DataType::List(_)));
347 assert_eq!(
348 out.explode(ExplodeOptions {
349 empty_as_null: true,
350 keep_nulls: true,
351 })?
352 .len(),
353 4
354 );
355 }
356
357 Ok(())
358 }
359}