polars_core/series/implementations/
mod.rs

1#![allow(unsafe_op_in_unsafe_fn)]
2#[cfg(feature = "dtype-array")]
3mod array;
4mod binary;
5mod binary_offset;
6mod boolean;
7#[cfg(feature = "dtype-categorical")]
8mod categorical;
9#[cfg(feature = "dtype-date")]
10mod date;
11#[cfg(feature = "dtype-datetime")]
12mod datetime;
13#[cfg(feature = "dtype-decimal")]
14mod decimal;
15#[cfg(feature = "dtype-duration")]
16mod duration;
17mod floats;
18mod list;
19pub(crate) mod null;
20#[cfg(feature = "object")]
21mod object;
22mod string;
23#[cfg(feature = "dtype-struct")]
24mod struct_;
25#[cfg(feature = "dtype-time")]
26mod time;
27
28use std::any::Any;
29use std::borrow::Cow;
30
31use polars_compute::rolling::QuantileMethod;
32
33use super::*;
34use crate::chunked_array::AsSinglePtr;
35use crate::chunked_array::comparison::*;
36use crate::chunked_array::ops::compare_inner::{
37    IntoTotalEqInner, IntoTotalOrdInner, TotalEqInner, TotalOrdInner,
38};
39
40// Utility wrapper struct
41pub(crate) struct SeriesWrap<T>(pub T);
42
43impl<T: PolarsDataType> From<ChunkedArray<T>> for SeriesWrap<ChunkedArray<T>> {
44    fn from(ca: ChunkedArray<T>) -> Self {
45        SeriesWrap(ca)
46    }
47}
48
49impl<T: PolarsDataType> Deref for SeriesWrap<ChunkedArray<T>> {
50    type Target = ChunkedArray<T>;
51
52    fn deref(&self) -> &Self::Target {
53        &self.0
54    }
55}
56
57unsafe impl<T: PolarsDataType + 'static> IntoSeries for ChunkedArray<T>
58where
59    SeriesWrap<ChunkedArray<T>>: SeriesTrait,
60{
61    fn into_series(self) -> Series
62    where
63        Self: Sized,
64    {
65        Series(Arc::new(SeriesWrap(self)))
66    }
67}
68
69macro_rules! impl_dyn_series {
70    ($ca: ident, $pdt:ty) => {
71        impl private::PrivateSeries for SeriesWrap<$ca> {
72            fn compute_len(&mut self) {
73                self.0.compute_len()
74            }
75
76            fn _field(&self) -> Cow<Field> {
77                Cow::Borrowed(self.0.ref_field())
78            }
79
80            fn _dtype(&self) -> &DataType {
81                self.0.ref_field().dtype()
82            }
83
84            fn _get_flags(&self) -> StatisticsFlags {
85                self.0.get_flags()
86            }
87
88            fn _set_flags(&mut self, flags: StatisticsFlags) {
89                self.0.set_flags(flags)
90            }
91
92            unsafe fn equal_element(
93                &self,
94                idx_self: usize,
95                idx_other: usize,
96                other: &Series,
97            ) -> bool {
98                self.0.equal_element(idx_self, idx_other, other)
99            }
100
101            #[cfg(feature = "zip_with")]
102            fn zip_with_same_type(
103                &self,
104                mask: &BooleanChunked,
105                other: &Series,
106            ) -> PolarsResult<Series> {
107                ChunkZip::zip_with(&self.0, mask, other.as_ref().as_ref())
108                    .map(|ca| ca.into_series())
109            }
110            fn into_total_eq_inner<'a>(&'a self) -> Box<dyn TotalEqInner + 'a> {
111                (&self.0).into_total_eq_inner()
112            }
113            fn into_total_ord_inner<'a>(&'a self) -> Box<dyn TotalOrdInner + 'a> {
114                (&self.0).into_total_ord_inner()
115            }
116
117            fn vec_hash(
118                &self,
119                random_state: PlRandomState,
120                buf: &mut Vec<u64>,
121            ) -> PolarsResult<()> {
122                self.0.vec_hash(random_state, buf)?;
123                Ok(())
124            }
125
126            fn vec_hash_combine(
127                &self,
128                build_hasher: PlRandomState,
129                hashes: &mut [u64],
130            ) -> PolarsResult<()> {
131                self.0.vec_hash_combine(build_hasher, hashes)?;
132                Ok(())
133            }
134
135            #[cfg(feature = "algorithm_group_by")]
136            unsafe fn agg_min(&self, groups: &GroupsType) -> Series {
137                self.0.agg_min(groups)
138            }
139
140            #[cfg(feature = "algorithm_group_by")]
141            unsafe fn agg_max(&self, groups: &GroupsType) -> Series {
142                self.0.agg_max(groups)
143            }
144
145            #[cfg(feature = "algorithm_group_by")]
146            unsafe fn agg_sum(&self, groups: &GroupsType) -> Series {
147                use DataType::*;
148                match self.dtype() {
149                    Int8 | UInt8 | Int16 | UInt16 => self
150                        .cast(&Int64, CastOptions::Overflowing)
151                        .unwrap()
152                        .agg_sum(groups),
153                    _ => self.0.agg_sum(groups),
154                }
155            }
156
157            #[cfg(feature = "algorithm_group_by")]
158            unsafe fn agg_std(&self, groups: &GroupsType, ddof: u8) -> Series {
159                self.0.agg_std(groups, ddof)
160            }
161
162            #[cfg(feature = "algorithm_group_by")]
163            unsafe fn agg_var(&self, groups: &GroupsType, ddof: u8) -> Series {
164                self.0.agg_var(groups, ddof)
165            }
166
167            #[cfg(feature = "algorithm_group_by")]
168            unsafe fn agg_list(&self, groups: &GroupsType) -> Series {
169                self.0.agg_list(groups)
170            }
171
172            #[cfg(feature = "bitwise")]
173            unsafe fn agg_and(&self, groups: &GroupsType) -> Series {
174                self.0.agg_and(groups)
175            }
176            #[cfg(feature = "bitwise")]
177            unsafe fn agg_or(&self, groups: &GroupsType) -> Series {
178                self.0.agg_or(groups)
179            }
180            #[cfg(feature = "bitwise")]
181            unsafe fn agg_xor(&self, groups: &GroupsType) -> Series {
182                self.0.agg_xor(groups)
183            }
184
185            fn subtract(&self, rhs: &Series) -> PolarsResult<Series> {
186                NumOpsDispatch::subtract(&self.0, rhs)
187            }
188            fn add_to(&self, rhs: &Series) -> PolarsResult<Series> {
189                NumOpsDispatch::add_to(&self.0, rhs)
190            }
191            fn multiply(&self, rhs: &Series) -> PolarsResult<Series> {
192                NumOpsDispatch::multiply(&self.0, rhs)
193            }
194            fn divide(&self, rhs: &Series) -> PolarsResult<Series> {
195                NumOpsDispatch::divide(&self.0, rhs)
196            }
197            fn remainder(&self, rhs: &Series) -> PolarsResult<Series> {
198                NumOpsDispatch::remainder(&self.0, rhs)
199            }
200            #[cfg(feature = "algorithm_group_by")]
201            fn group_tuples(&self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsType> {
202                IntoGroupsType::group_tuples(&self.0, multithreaded, sorted)
203            }
204
205            fn arg_sort_multiple(
206                &self,
207                by: &[Column],
208                options: &SortMultipleOptions,
209            ) -> PolarsResult<IdxCa> {
210                self.0.arg_sort_multiple(by, options)
211            }
212        }
213
214        impl SeriesTrait for SeriesWrap<$ca> {
215            #[cfg(feature = "rolling_window")]
216            fn rolling_map(
217                &self,
218                _f: &dyn Fn(&Series) -> Series,
219                _options: RollingOptionsFixedWindow,
220            ) -> PolarsResult<Series> {
221                ChunkRollApply::rolling_map(&self.0, _f, _options).map(|ca| ca.into_series())
222            }
223
224            fn rename(&mut self, name: PlSmallStr) {
225                self.0.rename(name);
226            }
227
228            fn chunk_lengths(&self) -> ChunkLenIter {
229                self.0.chunk_lengths()
230            }
231            fn name(&self) -> &PlSmallStr {
232                self.0.name()
233            }
234
235            fn chunks(&self) -> &Vec<ArrayRef> {
236                self.0.chunks()
237            }
238            unsafe fn chunks_mut(&mut self) -> &mut Vec<ArrayRef> {
239                self.0.chunks_mut()
240            }
241            fn shrink_to_fit(&mut self) {
242                self.0.shrink_to_fit()
243            }
244
245            fn slice(&self, offset: i64, length: usize) -> Series {
246                self.0.slice(offset, length).into_series()
247            }
248
249            fn split_at(&self, offset: i64) -> (Series, Series) {
250                let (a, b) = self.0.split_at(offset);
251                (a.into_series(), b.into_series())
252            }
253
254            fn append(&mut self, other: &Series) -> PolarsResult<()> {
255                polars_ensure!(self.0.dtype() == other.dtype(), append);
256                self.0.append(other.as_ref().as_ref())?;
257                Ok(())
258            }
259            fn append_owned(&mut self, other: Series) -> PolarsResult<()> {
260                polars_ensure!(self.0.dtype() == other.dtype(), append);
261                self.0.append_owned(other.take_inner())
262            }
263
264            fn extend(&mut self, other: &Series) -> PolarsResult<()> {
265                polars_ensure!(self.0.dtype() == other.dtype(), extend);
266                self.0.extend(other.as_ref().as_ref())?;
267                Ok(())
268            }
269
270            fn filter(&self, filter: &BooleanChunked) -> PolarsResult<Series> {
271                ChunkFilter::filter(&self.0, filter).map(|ca| ca.into_series())
272            }
273
274            fn _sum_as_f64(&self) -> f64 {
275                self.0._sum_as_f64()
276            }
277
278            fn mean(&self) -> Option<f64> {
279                self.0.mean()
280            }
281
282            fn median(&self) -> Option<f64> {
283                self.0.median()
284            }
285
286            fn std(&self, ddof: u8) -> Option<f64> {
287                self.0.std(ddof)
288            }
289
290            fn var(&self, ddof: u8) -> Option<f64> {
291                self.0.var(ddof)
292            }
293
294            fn take(&self, indices: &IdxCa) -> PolarsResult<Series> {
295                Ok(self.0.take(indices)?.into_series())
296            }
297
298            unsafe fn take_unchecked(&self, indices: &IdxCa) -> Series {
299                self.0.take_unchecked(indices).into_series()
300            }
301
302            fn take_slice(&self, indices: &[IdxSize]) -> PolarsResult<Series> {
303                Ok(self.0.take(indices)?.into_series())
304            }
305
306            unsafe fn take_slice_unchecked(&self, indices: &[IdxSize]) -> Series {
307                self.0.take_unchecked(indices).into_series()
308            }
309
310            fn len(&self) -> usize {
311                self.0.len()
312            }
313
314            fn rechunk(&self) -> Series {
315                self.0.rechunk().into_owned().into_series()
316            }
317
318            fn new_from_index(&self, index: usize, length: usize) -> Series {
319                ChunkExpandAtIndex::new_from_index(&self.0, index, length).into_series()
320            }
321
322            fn cast(&self, dtype: &DataType, options: CastOptions) -> PolarsResult<Series> {
323                self.0.cast_with_options(dtype, options)
324            }
325
326            #[inline]
327            unsafe fn get_unchecked(&self, index: usize) -> AnyValue {
328                self.0.get_any_value_unchecked(index)
329            }
330
331            fn sort_with(&self, options: SortOptions) -> PolarsResult<Series> {
332                Ok(ChunkSort::sort_with(&self.0, options).into_series())
333            }
334
335            fn arg_sort(&self, options: SortOptions) -> IdxCa {
336                ChunkSort::arg_sort(&self.0, options)
337            }
338
339            fn null_count(&self) -> usize {
340                self.0.null_count()
341            }
342
343            fn has_nulls(&self) -> bool {
344                self.0.has_nulls()
345            }
346
347            #[cfg(feature = "algorithm_group_by")]
348            fn unique(&self) -> PolarsResult<Series> {
349                ChunkUnique::unique(&self.0).map(|ca| ca.into_series())
350            }
351
352            #[cfg(feature = "algorithm_group_by")]
353            fn n_unique(&self) -> PolarsResult<usize> {
354                ChunkUnique::n_unique(&self.0)
355            }
356
357            #[cfg(feature = "algorithm_group_by")]
358            fn arg_unique(&self) -> PolarsResult<IdxCa> {
359                ChunkUnique::arg_unique(&self.0)
360            }
361
362            fn is_null(&self) -> BooleanChunked {
363                self.0.is_null()
364            }
365
366            fn is_not_null(&self) -> BooleanChunked {
367                self.0.is_not_null()
368            }
369
370            fn reverse(&self) -> Series {
371                ChunkReverse::reverse(&self.0).into_series()
372            }
373
374            fn as_single_ptr(&mut self) -> PolarsResult<usize> {
375                self.0.as_single_ptr()
376            }
377
378            fn shift(&self, periods: i64) -> Series {
379                ChunkShift::shift(&self.0, periods).into_series()
380            }
381
382            fn sum_reduce(&self) -> PolarsResult<Scalar> {
383                Ok(ChunkAggSeries::sum_reduce(&self.0))
384            }
385            fn max_reduce(&self) -> PolarsResult<Scalar> {
386                Ok(ChunkAggSeries::max_reduce(&self.0))
387            }
388            fn min_reduce(&self) -> PolarsResult<Scalar> {
389                Ok(ChunkAggSeries::min_reduce(&self.0))
390            }
391            fn median_reduce(&self) -> PolarsResult<Scalar> {
392                Ok(QuantileAggSeries::median_reduce(&self.0))
393            }
394            fn var_reduce(&self, ddof: u8) -> PolarsResult<Scalar> {
395                Ok(VarAggSeries::var_reduce(&self.0, ddof))
396            }
397            fn std_reduce(&self, ddof: u8) -> PolarsResult<Scalar> {
398                Ok(VarAggSeries::std_reduce(&self.0, ddof))
399            }
400            fn quantile_reduce(
401                &self,
402                quantile: f64,
403                method: QuantileMethod,
404            ) -> PolarsResult<Scalar> {
405                QuantileAggSeries::quantile_reduce(&self.0, quantile, method)
406            }
407
408            #[cfg(feature = "bitwise")]
409            fn and_reduce(&self) -> PolarsResult<Scalar> {
410                let dt = <$pdt as PolarsDataType>::get_dtype();
411                let av = self.0.and_reduce().map_or(AnyValue::Null, Into::into);
412
413                Ok(Scalar::new(dt, av))
414            }
415
416            #[cfg(feature = "bitwise")]
417            fn or_reduce(&self) -> PolarsResult<Scalar> {
418                let dt = <$pdt as PolarsDataType>::get_dtype();
419                let av = self.0.or_reduce().map_or(AnyValue::Null, Into::into);
420
421                Ok(Scalar::new(dt, av))
422            }
423
424            #[cfg(feature = "bitwise")]
425            fn xor_reduce(&self) -> PolarsResult<Scalar> {
426                let dt = <$pdt as PolarsDataType>::get_dtype();
427                let av = self.0.xor_reduce().map_or(AnyValue::Null, Into::into);
428
429                Ok(Scalar::new(dt, av))
430            }
431
432            #[cfg(feature = "approx_unique")]
433            fn approx_n_unique(&self) -> PolarsResult<IdxSize> {
434                Ok(ChunkApproxNUnique::approx_n_unique(&self.0))
435            }
436
437            fn clone_inner(&self) -> Arc<dyn SeriesTrait> {
438                Arc::new(SeriesWrap(Clone::clone(&self.0)))
439            }
440
441            #[cfg(feature = "checked_arithmetic")]
442            fn checked_div(&self, rhs: &Series) -> PolarsResult<Series> {
443                self.0.checked_div(rhs)
444            }
445
446            fn as_any(&self) -> &dyn Any {
447                &self.0
448            }
449
450            fn as_any_mut(&mut self) -> &mut dyn Any {
451                &mut self.0
452            }
453
454            fn as_phys_any(&self) -> &dyn Any {
455                &self.0
456            }
457
458            fn as_arc_any(self: Arc<Self>) -> Arc<dyn Any + Send + Sync> {
459                self as _
460            }
461        }
462    };
463}
464
465#[cfg(feature = "dtype-u8")]
466impl_dyn_series!(UInt8Chunked, UInt8Type);
467#[cfg(feature = "dtype-u16")]
468impl_dyn_series!(UInt16Chunked, UInt16Type);
469impl_dyn_series!(UInt32Chunked, UInt32Type);
470impl_dyn_series!(UInt64Chunked, UInt64Type);
471#[cfg(feature = "dtype-i8")]
472impl_dyn_series!(Int8Chunked, Int8Type);
473#[cfg(feature = "dtype-i16")]
474impl_dyn_series!(Int16Chunked, Int16Type);
475impl_dyn_series!(Int32Chunked, Int32Type);
476impl_dyn_series!(Int64Chunked, Int64Type);
477#[cfg(feature = "dtype-i128")]
478impl_dyn_series!(Int128Chunked, Int128Type);
479
480impl<T: PolarsNumericType> private::PrivateSeriesNumeric for SeriesWrap<ChunkedArray<T>> {
481    fn bit_repr(&self) -> Option<BitRepr> {
482        Some(self.0.to_bit_repr())
483    }
484}
485
486impl private::PrivateSeriesNumeric for SeriesWrap<StringChunked> {
487    fn bit_repr(&self) -> Option<BitRepr> {
488        None
489    }
490}
491impl private::PrivateSeriesNumeric for SeriesWrap<BinaryChunked> {
492    fn bit_repr(&self) -> Option<BitRepr> {
493        None
494    }
495}
496impl private::PrivateSeriesNumeric for SeriesWrap<BinaryOffsetChunked> {
497    fn bit_repr(&self) -> Option<BitRepr> {
498        None
499    }
500}
501impl private::PrivateSeriesNumeric for SeriesWrap<ListChunked> {
502    fn bit_repr(&self) -> Option<BitRepr> {
503        None
504    }
505}
506#[cfg(feature = "dtype-array")]
507impl private::PrivateSeriesNumeric for SeriesWrap<ArrayChunked> {
508    fn bit_repr(&self) -> Option<BitRepr> {
509        None
510    }
511}
512impl private::PrivateSeriesNumeric for SeriesWrap<BooleanChunked> {
513    fn bit_repr(&self) -> Option<BitRepr> {
514        let repr = self
515            .0
516            .cast_with_options(&DataType::UInt32, CastOptions::NonStrict)
517            .unwrap()
518            .u32()
519            .unwrap()
520            .clone();
521
522        Some(BitRepr::Small(repr))
523    }
524}