polars_core/frame/
chunks.rs1use arrow::record_batch::RecordBatch;
2use rayon::prelude::*;
3
4use crate::POOL;
5use crate::prelude::*;
6use crate::utils::{_split_offsets, accumulate_dataframes_vertical_unchecked, split_df_as_ref};
7
8impl From<RecordBatch> for DataFrame {
9 fn from(rb: RecordBatch) -> DataFrame {
10 let height = rb.height();
11 let (schema, arrays) = rb.into_schema_and_arrays();
12
13 let columns: Vec<Column> = arrays
14 .into_iter()
15 .zip(schema.iter())
16 .map(|(arr, (name, field))| {
17 unsafe {
20 Series::_try_from_arrow_unchecked_with_md(
21 name.clone(),
22 vec![arr],
23 field.dtype(),
24 field.metadata.as_deref(),
25 )
26 }
27 .unwrap()
28 .into_column()
29 })
30 .collect();
31
32 unsafe { DataFrame::new_no_checks(height, columns) }
34 }
35}
36
37impl DataFrame {
38 pub fn split_chunks(&mut self) -> impl Iterator<Item = DataFrame> + '_ {
39 self.align_chunks_par();
40
41 let first_series_col_idx = self
42 .columns
43 .iter()
44 .position(|col| col.as_series().is_some());
45 let df_height = self.height();
46 let mut prev_height = 0;
47 (0..self.first_col_n_chunks()).map(move |i| unsafe {
48 let chunk_size = first_series_col_idx
51 .map(|c| self.get_columns()[c].as_series().unwrap().chunks()[i].len())
52 .unwrap_or(df_height);
53 let columns = self
54 .get_columns()
55 .iter()
56 .map(|col| match col {
57 Column::Series(s) => Column::from(s.select_chunk(i)),
58 Column::Partitioned(_) | Column::Scalar(_) => {
59 col.slice(prev_height as i64, chunk_size)
60 },
61 })
62 .collect::<Vec<_>>();
63
64 prev_height += chunk_size;
65
66 DataFrame::new_no_checks(chunk_size, columns)
67 })
68 }
69
70 pub fn split_chunks_by_n(self, n: usize, parallel: bool) -> Vec<DataFrame> {
71 let split = _split_offsets(self.height(), n);
72
73 let split_fn = |(offset, len)| self.slice(offset as i64, len);
74
75 if parallel {
76 POOL.install(|| split.into_par_iter().map(split_fn).collect())
78 } else {
79 split.into_iter().map(split_fn).collect()
80 }
81 }
82}
83
84pub fn chunk_df_for_writing(
89 df: &mut DataFrame,
90 row_group_size: usize,
91) -> PolarsResult<std::borrow::Cow<DataFrame>> {
92 df.align_chunks_par();
94
95 if !df.get_columns().is_empty()
98 && df.get_columns()[0]
99 .as_materialized_series()
100 .chunk_lengths()
101 .take(5)
102 .all(|len| len < row_group_size)
103 {
104 fn finish(scratch: &mut Vec<DataFrame>, new_chunks: &mut Vec<DataFrame>) {
105 let mut new = accumulate_dataframes_vertical_unchecked(scratch.drain(..));
106 new.as_single_chunk_par();
107 new_chunks.push(new);
108 }
109
110 let mut new_chunks = Vec::with_capacity(df.first_col_n_chunks()); let mut scratch = vec![];
112 let mut remaining = row_group_size;
113
114 for df in df.split_chunks() {
115 remaining = remaining.saturating_sub(df.height());
116 scratch.push(df);
117
118 if remaining == 0 {
119 remaining = row_group_size;
120 finish(&mut scratch, &mut new_chunks);
121 }
122 }
123 if !scratch.is_empty() {
124 finish(&mut scratch, &mut new_chunks);
125 }
126 return Ok(std::borrow::Cow::Owned(
127 accumulate_dataframes_vertical_unchecked(new_chunks),
128 ));
129 }
130
131 let n_splits = df.height() / row_group_size;
132 let result = if n_splits > 0 {
133 let mut splits = split_df_as_ref(df, n_splits, false);
134
135 for df in splits.iter_mut() {
136 let n_chunks = df.first_col_n_chunks();
140 if n_chunks > 1 && (df.estimated_size() / n_chunks < 128 * 1024) {
141 df.as_single_chunk_par();
142 }
143 }
144
145 std::borrow::Cow::Owned(accumulate_dataframes_vertical_unchecked(splits))
146 } else {
147 std::borrow::Cow::Borrowed(df)
148 };
149 Ok(result)
150}