polars_core/
testing.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
//! Testing utilities.

use crate::prelude::*;

impl Series {
    /// Check if series are equal. Note that `None == None` evaluates to `false`
    pub fn equals(&self, other: &Series) -> bool {
        if self.null_count() > 0 || other.null_count() > 0 {
            false
        } else {
            self.equals_missing(other)
        }
    }

    /// Check if all values in series are equal where `None == None` evaluates to `true`.
    pub fn equals_missing(&self, other: &Series) -> bool {
        match (self.dtype(), other.dtype()) {
            // Two [`Datetime`](DataType::Datetime) series are *not* equal if their timezones
            // are different, regardless if they represent the same UTC time or not.
            #[cfg(feature = "timezones")]
            (DataType::Datetime(_, tz_lhs), DataType::Datetime(_, tz_rhs)) => {
                if tz_lhs != tz_rhs {
                    return false;
                }
            },
            _ => {},
        }

        // Differs from Partial::eq in that numerical dtype may be different
        self.len() == other.len() && self.null_count() == other.null_count() && {
            let eq = self.equal_missing(other);
            match eq {
                Ok(b) => b.all(),
                Err(_) => false,
            }
        }
    }
}

impl PartialEq for Series {
    fn eq(&self, other: &Self) -> bool {
        self.equals_missing(other)
    }
}

impl DataFrame {
    /// Check if [`DataFrame`]' schemas are equal.
    pub fn schema_equal(&self, other: &DataFrame) -> PolarsResult<()> {
        for (lhs, rhs) in self.iter().zip(other.iter()) {
            polars_ensure!(
                lhs.name() == rhs.name(),
                SchemaMismatch: "column name mismatch: left-hand = '{}', right-hand = '{}'",
                lhs.name(), rhs.name()
            );
            polars_ensure!(
                lhs.dtype() == rhs.dtype(),
                SchemaMismatch: "column datatype mismatch: left-hand = '{}', right-hand = '{}'",
                lhs.dtype(), rhs.dtype()
            );
        }
        Ok(())
    }

    /// Check if [`DataFrame`]s are equal. Note that `None == None` evaluates to `false`
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Atomic number" => &[1, 51, 300],
    ///                         "Element" => &[Some("Hydrogen"), Some("Antimony"), None])?;
    /// let df2: DataFrame = df!("Atomic number" => &[1, 51, 300],
    ///                         "Element" => &[Some("Hydrogen"), Some("Antimony"), None])?;
    ///
    /// assert!(!df1.equals(&df2));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn equals(&self, other: &DataFrame) -> bool {
        if self.shape() != other.shape() {
            return false;
        }
        for (left, right) in self.get_columns().iter().zip(other.get_columns()) {
            if left.name() != right.name() || !left.equals(right) {
                return false;
            }
        }
        true
    }

    /// Check if all values in [`DataFrame`]s are equal where `None == None` evaluates to `true`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Atomic number" => &[1, 51, 300],
    ///                         "Element" => &[Some("Hydrogen"), Some("Antimony"), None])?;
    /// let df2: DataFrame = df!("Atomic number" => &[1, 51, 300],
    ///                         "Element" => &[Some("Hydrogen"), Some("Antimony"), None])?;
    ///
    /// assert!(df1.equals_missing(&df2));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn equals_missing(&self, other: &DataFrame) -> bool {
        if self.shape() != other.shape() {
            return false;
        }
        for (left, right) in self.get_columns().iter().zip(other.get_columns()) {
            if left.name() != right.name() || !left.equals_missing(right) {
                return false;
            }
        }
        true
    }
}

impl PartialEq for DataFrame {
    fn eq(&self, other: &Self) -> bool {
        self.shape() == other.shape()
            && self
                .columns
                .iter()
                .zip(other.columns.iter())
                .all(|(s1, s2)| s1.equals_missing(s2))
    }
}

/// Asserts that two expressions of type [`DataFrame`] are equal according to [`DataFrame::equals`]
/// at runtime.
///
/// If the expression are not equal, the program will panic with a message that displays
/// both dataframes.
#[macro_export]
macro_rules! assert_df_eq {
    ($a:expr, $b:expr $(,)?) => {
        let a: &$crate::frame::DataFrame = &$a;
        let b: &$crate::frame::DataFrame = &$b;
        assert!(a.equals(b), "expected {:?}\nto equal {:?}", a, b);
    };
}

#[cfg(test)]
mod test {
    use crate::prelude::*;

    #[test]
    fn test_series_equals() {
        let a = Series::new("a".into(), &[1_u32, 2, 3]);
        let b = Series::new("a".into(), &[1_u32, 2, 3]);
        assert!(a.equals(&b));

        let s = Series::new("foo".into(), &[None, Some(1i64)]);
        assert!(s.equals_missing(&s));
    }

    #[test]
    fn test_series_dtype_not_equal() {
        let s_i32 = Series::new("a".into(), &[1_i32, 2_i32]);
        let s_i64 = Series::new("a".into(), &[1_i64, 2_i64]);
        assert!(s_i32.dtype() != s_i64.dtype());
        assert!(s_i32.equals(&s_i64));
    }

    #[test]
    fn test_df_equal() {
        let a = Column::new("a".into(), [1, 2, 3].as_ref());
        let b = Column::new("b".into(), [1, 2, 3].as_ref());

        let df1 = DataFrame::new(vec![a, b]).unwrap();
        assert!(df1.equals(&df1))
    }

    #[test]
    fn assert_df_eq_passes() {
        let df = df!("a" => [1], "b" => [2]).unwrap();
        assert_df_eq!(df, df);
        drop(df); // Ensure `assert_df_eq!` does not consume its arguments.
    }

    #[test]
    #[should_panic(expected = "to equal")]
    fn assert_df_eq_panics() {
        assert_df_eq!(df!("a" => [1]).unwrap(), df!("a" => [2]).unwrap(),);
    }

    #[test]
    fn test_df_partialeq() {
        let df1 = df!("a" => &[1, 2, 3],
                      "b" => &[4, 5, 6])
        .unwrap();
        let df2 = df!("b" => &[4, 5, 6],
                      "a" => &[1, 2, 3])
        .unwrap();
        let df3 = df!("" => &[Some(1), None]).unwrap();
        let df4 = df!("" => &[f32::NAN]).unwrap();

        assert_eq!(df1, df1);
        assert_ne!(df1, df2);
        assert_eq!(df2, df2);
        assert_ne!(df2, df3);
        assert_eq!(df3, df3);
        assert_eq!(df4, df4);
    }
}