polars_core/chunked_array/ops/rolling_window.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
use arrow::legacy::prelude::RollingFnParams;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "rolling_window", derive(PartialEq))]
pub struct RollingOptionsFixedWindow {
/// The length of the window.
pub window_size: usize,
/// Amount of elements in the window that should be filled before computing a result.
pub min_periods: usize,
/// An optional slice with the same length as the window that will be multiplied
/// elementwise with the values in the window.
pub weights: Option<Vec<f64>>,
/// Set the labels at the center of the window.
pub center: bool,
/// Optional parameters for the rolling
#[cfg_attr(feature = "serde", serde(default))]
pub fn_params: Option<RollingFnParams>,
}
impl Default for RollingOptionsFixedWindow {
fn default() -> Self {
RollingOptionsFixedWindow {
window_size: 3,
min_periods: 1,
weights: None,
center: false,
fn_params: None,
}
}
}
#[cfg(feature = "rolling_window")]
mod inner_mod {
use std::ops::SubAssign;
use arrow::bitmap::utils::set_bit_unchecked;
use arrow::bitmap::MutableBitmap;
use arrow::legacy::trusted_len::TrustedLenPush;
use num_traits::pow::Pow;
use num_traits::{Float, Zero};
use polars_utils::float::IsFloat;
use crate::chunked_array::cast::CastOptions;
use crate::prelude::*;
/// utility
fn check_input(window_size: usize, min_periods: usize) -> PolarsResult<()> {
polars_ensure!(
min_periods <= window_size,
ComputeError: "`window_size`: {} should be >= `min_periods`: {}",
window_size, min_periods
);
Ok(())
}
/// utility
fn window_edges(idx: usize, len: usize, window_size: usize, center: bool) -> (usize, usize) {
let (start, end) = if center {
let right_window = (window_size + 1) / 2;
(
idx.saturating_sub(window_size - right_window),
len.min(idx + right_window),
)
} else {
(idx.saturating_sub(window_size - 1), idx + 1)
};
(start, end - start)
}
impl<T> ChunkRollApply for ChunkedArray<T>
where
T: PolarsNumericType,
Self: IntoSeries,
{
/// Apply a rolling custom function. This is pretty slow because of dynamic dispatch.
fn rolling_map(
&self,
f: &dyn Fn(&Series) -> Series,
mut options: RollingOptionsFixedWindow,
) -> PolarsResult<Series> {
check_input(options.window_size, options.min_periods)?;
let ca = self.rechunk();
if options.weights.is_some()
&& !matches!(self.dtype(), DataType::Float64 | DataType::Float32)
{
let s = self.cast_with_options(&DataType::Float64, CastOptions::NonStrict)?;
return s.rolling_map(f, options);
}
options.window_size = std::cmp::min(self.len(), options.window_size);
let len = self.len();
let arr = ca.downcast_iter().next().unwrap();
let mut ca = ChunkedArray::<T>::from_slice(PlSmallStr::EMPTY, &[T::Native::zero()]);
let ptr = ca.chunks[0].as_mut() as *mut dyn Array as *mut PrimitiveArray<T::Native>;
let mut series_container = ca.into_series();
let mut builder = PrimitiveChunkedBuilder::<T>::new(self.name().clone(), self.len());
if let Some(weights) = options.weights {
let weights_series =
Float64Chunked::new(PlSmallStr::from_static("weights"), &weights).into_series();
let weights_series = weights_series.cast(self.dtype()).unwrap();
for idx in 0..len {
let (start, size) = window_edges(idx, len, options.window_size, options.center);
if size < options.min_periods {
builder.append_null();
} else {
// SAFETY:
// we are in bounds
let arr_window = unsafe { arr.slice_typed_unchecked(start, size) };
// ensure we still meet window size criteria after removing null values
if size - arr_window.null_count() < options.min_periods {
builder.append_null();
continue;
}
// SAFETY.
// ptr is not dropped as we are in scope
// We are also the only owner of the contents of the Arc
// we do this to reduce heap allocs.
unsafe {
*ptr = arr_window;
}
// reset flags as we reuse this container
series_container.clear_flags();
// ensure the length is correct
series_container._get_inner_mut().compute_len();
let s = if size == options.window_size {
f(&series_container.multiply(&weights_series).unwrap())
} else {
let weights_cutoff: Series = match self.dtype() {
DataType::Float64 => weights_series
.f64()
.unwrap()
.into_iter()
.take(series_container.len())
.collect(),
_ => weights_series // Float32 case
.f32()
.unwrap()
.into_iter()
.take(series_container.len())
.collect(),
};
f(&series_container.multiply(&weights_cutoff).unwrap())
};
let out = self.unpack_series_matching_type(&s)?;
builder.append_option(out.get(0));
}
}
Ok(builder.finish().into_series())
} else {
for idx in 0..len {
let (start, size) = window_edges(idx, len, options.window_size, options.center);
if size < options.min_periods {
builder.append_null();
} else {
// SAFETY:
// we are in bounds
let arr_window = unsafe { arr.slice_typed_unchecked(start, size) };
// ensure we still meet window size criteria after removing null values
if size - arr_window.null_count() < options.min_periods {
builder.append_null();
continue;
}
// SAFETY.
// ptr is not dropped as we are in scope
// We are also the only owner of the contents of the Arc
// we do this to reduce heap allocs.
unsafe {
*ptr = arr_window;
}
// reset flags as we reuse this container
series_container.clear_flags();
// ensure the length is correct
series_container._get_inner_mut().compute_len();
let s = f(&series_container);
let out = self.unpack_series_matching_type(&s)?;
builder.append_option(out.get(0));
}
}
Ok(builder.finish().into_series())
}
}
}
impl<T> ChunkedArray<T>
where
ChunkedArray<T>: IntoSeries,
T: PolarsFloatType,
T::Native: Float + IsFloat + SubAssign + Pow<T::Native, Output = T::Native>,
{
/// Apply a rolling custom function. This is pretty slow because of dynamic dispatch.
pub fn rolling_map_float<F>(&self, window_size: usize, mut f: F) -> PolarsResult<Self>
where
F: FnMut(&mut ChunkedArray<T>) -> Option<T::Native>,
{
if window_size > self.len() {
return Ok(Self::full_null(self.name().clone(), self.len()));
}
let ca = self.rechunk();
let arr = ca.downcast_iter().next().unwrap();
// We create a temporary dummy ChunkedArray. This will be a
// container where we swap the window contents every iteration doing
// so will save a lot of heap allocations.
let mut heap_container =
ChunkedArray::<T>::from_slice(PlSmallStr::EMPTY, &[T::Native::zero()]);
let ptr = heap_container.chunks[0].as_mut() as *mut dyn Array
as *mut PrimitiveArray<T::Native>;
let mut validity = MutableBitmap::with_capacity(ca.len());
validity.extend_constant(window_size - 1, false);
validity.extend_constant(ca.len() - (window_size - 1), true);
let validity_slice = validity.as_mut_slice();
let mut values = Vec::with_capacity(ca.len());
values.extend(std::iter::repeat(T::Native::default()).take(window_size - 1));
for offset in 0..self.len() + 1 - window_size {
debug_assert!(offset + window_size <= arr.len());
let arr_window = unsafe { arr.slice_typed_unchecked(offset, window_size) };
// The lengths are cached, so we must update them.
heap_container.length = arr_window.len() as IdxSize;
// SAFETY: ptr is not dropped as we are in scope. We are also the only
// owner of the contents of the Arc (we do this to reduce heap allocs).
unsafe {
*ptr = arr_window;
}
let out = f(&mut heap_container);
match out {
Some(v) => {
// SAFETY: we have pre-allocated.
unsafe { values.push_unchecked(v) }
},
None => {
// SAFETY: we allocated enough for both the `values` vec
// and the `validity_ptr`.
unsafe {
values.push_unchecked(T::Native::default());
set_bit_unchecked(validity_slice, offset + window_size - 1, false);
}
},
}
}
let arr = PrimitiveArray::new(
T::get_dtype().to_arrow(CompatLevel::newest()),
values.into(),
Some(validity.into()),
);
Ok(Self::with_chunk(self.name().clone(), arr))
}
}
}