polars_core/chunked_array/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
//! The typed heart of every Series column.
use std::iter::Map;
use std::sync::Arc;

use arrow::array::*;
use arrow::bitmap::Bitmap;
use polars_compute::filter::filter_with_bitmap;

use crate::prelude::*;

pub mod ops;
#[macro_use]
pub mod arithmetic;
pub mod builder;
pub mod cast;
pub mod collect;
pub mod comparison;
pub mod flags;
pub mod float;
pub mod iterator;
#[cfg(feature = "ndarray")]
pub(crate) mod ndarray;

#[cfg(feature = "dtype-array")]
pub(crate) mod array;
mod binary;
mod bitwise;
#[cfg(feature = "object")]
mod drop;
mod from;
mod from_iterator;
pub mod from_iterator_par;
pub(crate) mod list;
pub(crate) mod logical;
#[cfg(feature = "object")]
pub mod object;
#[cfg(feature = "random")]
mod random;
#[cfg(feature = "dtype-struct")]
mod struct_;
#[cfg(any(
    feature = "temporal",
    feature = "dtype-datetime",
    feature = "dtype-date"
))]
pub mod temporal;
mod to_vec;
mod trusted_len;

use std::mem;
use std::slice::Iter;

use arrow::legacy::kernels::concatenate::concatenate_owned_unchecked;
use arrow::legacy::prelude::*;
#[cfg(feature = "dtype-struct")]
pub use struct_::StructChunked;

use self::flags::{StatisticsFlags, StatisticsFlagsIM};
use crate::series::IsSorted;
use crate::utils::{first_non_null, last_non_null};

#[cfg(not(feature = "dtype-categorical"))]
pub struct RevMapping {}

pub type ChunkLenIter<'a> = std::iter::Map<std::slice::Iter<'a, ArrayRef>, fn(&ArrayRef) -> usize>;

/// # ChunkedArray
///
/// Every Series contains a [`ChunkedArray<T>`]. Unlike [`Series`], [`ChunkedArray`]s are typed. This allows
/// us to apply closures to the data and collect the results to a [`ChunkedArray`] of the same type `T`.
/// Below we use an apply to use the cosine function to the values of a [`ChunkedArray`].
///
/// ```rust
/// # use polars_core::prelude::*;
/// fn apply_cosine_and_cast(ca: &Float32Chunked) -> Float32Chunked {
///     ca.apply_values(|v| v.cos())
/// }
/// ```
///
/// ## Conversion between Series and ChunkedArrays
/// Conversion from a [`Series`] to a [`ChunkedArray`] is effortless.
///
/// ```rust
/// # use polars_core::prelude::*;
/// fn to_chunked_array(series: &Series) -> PolarsResult<&Int32Chunked>{
///     series.i32()
/// }
///
/// fn to_series(ca: Int32Chunked) -> Series {
///     ca.into_series()
/// }
/// ```
///
/// # Iterators
///
/// [`ChunkedArray`]s fully support Rust native [Iterator](https://doc.rust-lang.org/std/iter/trait.Iterator.html)
/// and [DoubleEndedIterator](https://doc.rust-lang.org/std/iter/trait.DoubleEndedIterator.html) traits, thereby
/// giving access to all the excellent methods available for [Iterators](https://doc.rust-lang.org/std/iter/trait.Iterator.html).
///
/// ```rust
/// # use polars_core::prelude::*;
///
/// fn iter_forward(ca: &Float32Chunked) {
///     ca.iter()
///         .for_each(|opt_v| println!("{:?}", opt_v))
/// }
///
/// fn iter_backward(ca: &Float32Chunked) {
///     ca.iter()
///         .rev()
///         .for_each(|opt_v| println!("{:?}", opt_v))
/// }
/// ```
///
/// # Memory layout
///
/// [`ChunkedArray`]s use [Apache Arrow](https://github.com/apache/arrow) as backend for the memory layout.
/// Arrows memory is immutable which makes it possible to make multiple zero copy (sub)-views from a single array.
///
/// To be able to append data, Polars uses chunks to append new memory locations, hence the [`ChunkedArray<T>`] data structure.
/// Appends are cheap, because it will not lead to a full reallocation of the whole array (as could be the case with a Rust Vec).
///
/// However, multiple chunks in a [`ChunkedArray`] will slow down many operations that need random access because we have an extra indirection
/// and indexes need to be mapped to the proper chunk. Arithmetic may also be slowed down by this.
/// When multiplying two [`ChunkedArray`]s with different chunk sizes they cannot utilize [SIMD](https://en.wikipedia.org/wiki/SIMD) for instance.
///
/// If you want to have predictable performance
/// (no unexpected re-allocation of memory), it is advised to call the [`ChunkedArray::rechunk`] after
/// multiple append operations.
///
/// See also [`ChunkedArray::extend`] for appends within a chunk.
///
/// # Invariants
/// - A [`ChunkedArray`] should always have at least a single [`ArrayRef`].
/// - The [`PolarsDataType`] `T` should always map to the correct [`ArrowDataType`] in the [`ArrayRef`]
///   chunks.
/// - Nested datatypes such as [`List`] and [`Array`] store the physical types instead of the
///   logical type given by the datatype.
///
/// [`List`]: crate::datatypes::DataType::List
pub struct ChunkedArray<T: PolarsDataType> {
    pub(crate) field: Arc<Field>,
    pub(crate) chunks: Vec<ArrayRef>,

    pub(crate) flags: StatisticsFlagsIM,

    length: usize,
    null_count: usize,
    _pd: std::marker::PhantomData<T>,
}

impl<T: PolarsDataType> ChunkedArray<T> {
    fn should_rechunk(&self) -> bool {
        self.chunks.len() > 1 && self.chunks.len() > self.len() / 3
    }

    fn optional_rechunk(self) -> Self {
        // Rechunk if we have many small chunks.
        if self.should_rechunk() {
            self.rechunk()
        } else {
            self
        }
    }

    pub(crate) fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    /// Series to [`ChunkedArray<T>`]
    pub fn unpack_series_matching_type<'a>(
        &self,
        series: &'a Series,
    ) -> PolarsResult<&'a ChunkedArray<T>> {
        match self.dtype() {
            #[cfg(feature = "dtype-decimal")]
            DataType::Decimal(_, _) => {
                let logical = series.decimal()?;

                let ca = logical.physical();
                Ok(ca.as_any().downcast_ref::<ChunkedArray<T>>().unwrap())
            },
            dt => {
                polars_ensure!(
                    dt == series.dtype(),
                    SchemaMismatch: "cannot unpack series of type `{}` into `{}`",
                    series.dtype(),
                    dt,
                );

                // SAFETY:
                // dtype will be correct.
                Ok(unsafe { self.unpack_series_matching_physical_type(series) })
            },
        }
    }

    /// Create a new [`ChunkedArray`] and compute its `length` and `null_count`.
    ///
    /// If you want to explicitly the `length` and `null_count`, look at
    /// [`ChunkedArray::new_with_dims`]
    fn new_with_compute_len(field: Arc<Field>, chunks: Vec<ArrayRef>) -> Self {
        unsafe {
            let mut chunked_arr = Self::new_with_dims(field, chunks, 0, 0);
            chunked_arr.compute_len();
            chunked_arr
        }
    }

    /// Create a new [`ChunkedArray`] and explicitly set its `length` and `null_count`.
    /// # Safety
    /// The length and null_count must be correct.
    pub unsafe fn new_with_dims(
        field: Arc<Field>,
        chunks: Vec<ArrayRef>,
        length: usize,
        null_count: usize,
    ) -> Self {
        Self {
            field,
            chunks,
            flags: StatisticsFlagsIM::empty(),

            _pd: Default::default(),
            length,
            null_count,
        }
    }

    pub(crate) fn is_sorted_ascending_flag(&self) -> bool {
        self.get_flags().is_sorted_ascending()
    }

    pub(crate) fn is_sorted_descending_flag(&self) -> bool {
        self.get_flags().is_sorted_descending()
    }

    /// Whether `self` is sorted in any direction.
    pub(crate) fn is_sorted_any(&self) -> bool {
        self.get_flags().is_sorted_any()
    }

    pub fn unset_fast_explode_list(&mut self) {
        self.set_fast_explode_list(false)
    }

    pub fn set_fast_explode_list(&mut self, value: bool) {
        let mut flags = self.flags.get_mut();
        flags.set(StatisticsFlags::CAN_FAST_EXPLODE_LIST, value);
        self.flags.set_mut(flags);
    }

    pub fn get_fast_explode_list(&self) -> bool {
        self.get_flags().can_fast_explode_list()
    }

    pub fn get_flags(&self) -> StatisticsFlags {
        self.flags.get()
    }

    /// Set flags for the [`ChunkedArray`]
    pub(crate) fn set_flags(&mut self, flags: StatisticsFlags) {
        self.flags = StatisticsFlagsIM::new(flags);
    }

    pub fn is_sorted_flag(&self) -> IsSorted {
        self.get_flags().is_sorted()
    }

    pub fn retain_flags_from<U: PolarsDataType>(
        &mut self,
        from: &ChunkedArray<U>,
        retain_flags: StatisticsFlags,
    ) {
        let flags = from.flags.get();
        // Try to avoid write contention.
        if !flags.is_empty() {
            self.set_flags(flags & retain_flags)
        }
    }

    /// Set the 'sorted' bit meta info.
    pub fn set_sorted_flag(&mut self, sorted: IsSorted) {
        let mut flags = self.flags.get_mut();
        flags.set_sorted(sorted);
        self.flags.set_mut(flags);
    }

    /// Set the 'sorted' bit meta info.
    pub fn with_sorted_flag(&self, sorted: IsSorted) -> Self {
        let mut out = self.clone();
        out.set_sorted_flag(sorted);
        out
    }

    /// Get the index of the first non null value in this [`ChunkedArray`].
    pub fn first_non_null(&self) -> Option<usize> {
        if self.null_count() == self.len() {
            None
        }
        // We now know there is at least 1 non-null item in the array, and self.len() > 0
        else if self.null_count() == 0 {
            Some(0)
        } else if self.is_sorted_any() {
            let out = if unsafe { self.downcast_get_unchecked(0).is_null_unchecked(0) } {
                // nulls are all at the start
                self.null_count()
            } else {
                // nulls are all at the end
                0
            };

            debug_assert!(
                // If we are lucky this catches something.
                unsafe { self.get_unchecked(out) }.is_some(),
                "incorrect sorted flag"
            );

            Some(out)
        } else {
            first_non_null(self.iter_validities())
        }
    }

    /// Get the index of the last non null value in this [`ChunkedArray`].
    pub fn last_non_null(&self) -> Option<usize> {
        if self.null_count() == self.len() {
            None
        }
        // We now know there is at least 1 non-null item in the array, and self.len() > 0
        else if self.null_count() == 0 {
            Some(self.len() - 1)
        } else if self.is_sorted_any() {
            let out = if unsafe { self.downcast_get_unchecked(0).is_null_unchecked(0) } {
                // nulls are all at the start
                self.len() - 1
            } else {
                // nulls are all at the end
                self.len() - self.null_count() - 1
            };

            debug_assert!(
                // If we are lucky this catches something.
                unsafe { self.get_unchecked(out) }.is_some(),
                "incorrect sorted flag"
            );

            Some(out)
        } else {
            last_non_null(self.iter_validities(), self.len())
        }
    }

    pub fn drop_nulls(&self) -> Self {
        if self.null_count() == 0 {
            self.clone()
        } else {
            let chunks = self
                .downcast_iter()
                .map(|arr| {
                    if arr.null_count() == 0 {
                        arr.to_boxed()
                    } else {
                        filter_with_bitmap(arr, arr.validity().unwrap())
                    }
                })
                .collect();
            unsafe {
                Self::new_with_dims(
                    self.field.clone(),
                    chunks,
                    self.len() - self.null_count(),
                    0,
                )
            }
        }
    }

    /// Get the buffer of bits representing null values
    #[inline]
    #[allow(clippy::type_complexity)]
    pub fn iter_validities(&self) -> Map<Iter<'_, ArrayRef>, fn(&ArrayRef) -> Option<&Bitmap>> {
        fn to_validity(arr: &ArrayRef) -> Option<&Bitmap> {
            arr.validity()
        }
        self.chunks.iter().map(to_validity)
    }

    #[inline]
    /// Return if any the chunks in this [`ChunkedArray`] have nulls.
    pub fn has_nulls(&self) -> bool {
        self.null_count > 0
    }

    /// Shrink the capacity of this array to fit its length.
    pub fn shrink_to_fit(&mut self) {
        self.chunks = vec![concatenate_owned_unchecked(self.chunks.as_slice()).unwrap()];
    }

    pub fn clear(&self) -> Self {
        // SAFETY: we keep the correct dtype
        let mut ca = unsafe {
            self.copy_with_chunks(vec![new_empty_array(
                self.chunks.first().unwrap().dtype().clone(),
            )])
        };

        use StatisticsFlags as F;
        ca.retain_flags_from(self, F::IS_SORTED_ANY | F::CAN_FAST_EXPLODE_LIST);
        ca
    }

    /// Unpack a [`Series`] to the same physical type.
    ///
    /// # Safety
    ///
    /// This is unsafe as the dtype may be incorrect and
    /// is assumed to be correct in other safe code.
    pub(crate) unsafe fn unpack_series_matching_physical_type<'a>(
        &self,
        series: &'a Series,
    ) -> &'a ChunkedArray<T> {
        let series_trait = &**series;
        if self.dtype() == series.dtype() {
            &*(series_trait as *const dyn SeriesTrait as *const ChunkedArray<T>)
        } else {
            use DataType::*;
            match (self.dtype(), series.dtype()) {
                (Int64, Datetime(_, _)) | (Int64, Duration(_)) | (Int32, Date) => {
                    &*(series_trait as *const dyn SeriesTrait as *const ChunkedArray<T>)
                },
                _ => panic!(
                    "cannot unpack series {:?} into matching type {:?}",
                    series,
                    self.dtype()
                ),
            }
        }
    }

    /// Returns an iterator over the lengths of the chunks of the array.
    pub fn chunk_lengths(&self) -> ChunkLenIter {
        self.chunks.iter().map(|chunk| chunk.len())
    }

    /// A reference to the chunks
    #[inline]
    pub fn chunks(&self) -> &Vec<ArrayRef> {
        &self.chunks
    }

    /// A mutable reference to the chunks
    ///
    /// # Safety
    /// The caller must ensure to not change the [`DataType`] or `length` of any of the chunks.
    /// And the `null_count` remains correct.
    #[inline]
    pub unsafe fn chunks_mut(&mut self) -> &mut Vec<ArrayRef> {
        &mut self.chunks
    }

    /// Returns true if contains a single chunk and has no null values
    pub fn is_optimal_aligned(&self) -> bool {
        self.chunks.len() == 1 && self.null_count() == 0
    }

    /// Create a new [`ChunkedArray`] from self, where the chunks are replaced.
    ///
    /// # Safety
    /// The caller must ensure the dtypes of the chunks are correct
    unsafe fn copy_with_chunks(&self, chunks: Vec<ArrayRef>) -> Self {
        Self::new_with_compute_len(self.field.clone(), chunks)
    }

    /// Get data type of [`ChunkedArray`].
    pub fn dtype(&self) -> &DataType {
        self.field.dtype()
    }

    pub(crate) unsafe fn set_dtype(&mut self, dtype: DataType) {
        self.field = Arc::new(Field::new(self.name().clone(), dtype))
    }

    /// Name of the [`ChunkedArray`].
    pub fn name(&self) -> &PlSmallStr {
        self.field.name()
    }

    /// Get a reference to the field.
    pub fn ref_field(&self) -> &Field {
        &self.field
    }

    /// Rename this [`ChunkedArray`].
    pub fn rename(&mut self, name: PlSmallStr) {
        self.field = Arc::new(Field::new(name, self.field.dtype().clone()));
    }

    /// Return this [`ChunkedArray`] with a new name.
    pub fn with_name(mut self, name: PlSmallStr) -> Self {
        self.rename(name);
        self
    }
}

impl<T> ChunkedArray<T>
where
    T: PolarsDataType,
{
    /// Get a single value from this [`ChunkedArray`]. If the return values is `None` this
    /// indicates a NULL value.
    ///
    /// # Panics
    /// This function will panic if `idx` is out of bounds.
    #[inline]
    pub fn get(&self, idx: usize) -> Option<T::Physical<'_>> {
        let (chunk_idx, arr_idx) = self.index_to_chunked_index(idx);
        assert!(
            chunk_idx < self.chunks().len(),
            "index: {} out of bounds for len: {}",
            idx,
            self.len()
        );
        unsafe {
            let arr = self.downcast_get_unchecked(chunk_idx);
            assert!(
                arr_idx < arr.len(),
                "index: {} out of bounds for len: {}",
                idx,
                self.len()
            );
            arr.get_unchecked(arr_idx)
        }
    }

    /// Get a single value from this [`ChunkedArray`]. If the return values is `None` this
    /// indicates a NULL value.
    ///
    /// # Safety
    /// It is the callers responsibility that the `idx < self.len()`.
    #[inline]
    pub unsafe fn get_unchecked(&self, idx: usize) -> Option<T::Physical<'_>> {
        let (chunk_idx, arr_idx) = self.index_to_chunked_index(idx);

        unsafe {
            // SAFETY: up to the caller to make sure the index is valid.
            self.downcast_get_unchecked(chunk_idx)
                .get_unchecked(arr_idx)
        }
    }

    /// Get a single value from this [`ChunkedArray`]. Null values are ignored and the returned
    /// value could be garbage if it was masked out by NULL. Note that the value always is initialized.
    ///
    /// # Safety
    /// It is the callers responsibility that the `idx < self.len()`.
    #[inline]
    pub unsafe fn value_unchecked(&self, idx: usize) -> T::Physical<'_> {
        let (chunk_idx, arr_idx) = self.index_to_chunked_index(idx);

        unsafe {
            // SAFETY: up to the caller to make sure the index is valid.
            self.downcast_get_unchecked(chunk_idx)
                .value_unchecked(arr_idx)
        }
    }

    #[inline]
    pub fn first(&self) -> Option<T::Physical<'_>> {
        unsafe {
            let arr = self.downcast_get_unchecked(0);
            arr.get_unchecked(0)
        }
    }

    #[inline]
    pub fn last(&self) -> Option<T::Physical<'_>> {
        unsafe {
            let arr = self.downcast_get_unchecked(self.chunks.len().checked_sub(1)?);
            arr.get_unchecked(arr.len().checked_sub(1)?)
        }
    }
}

impl ListChunked {
    #[inline]
    pub fn get_as_series(&self, idx: usize) -> Option<Series> {
        unsafe {
            Some(Series::from_chunks_and_dtype_unchecked(
                self.name().clone(),
                vec![self.get(idx)?],
                &self.inner_dtype().to_physical(),
            ))
        }
    }
}

#[cfg(feature = "dtype-array")]
impl ArrayChunked {
    #[inline]
    pub fn get_as_series(&self, idx: usize) -> Option<Series> {
        unsafe {
            Some(Series::from_chunks_and_dtype_unchecked(
                self.name().clone(),
                vec![self.get(idx)?],
                &self.inner_dtype().to_physical(),
            ))
        }
    }
}

impl<T> ChunkedArray<T>
where
    T: PolarsDataType,
{
    /// Should be used to match the chunk_id of another [`ChunkedArray`].
    /// # Panics
    /// It is the callers responsibility to ensure that this [`ChunkedArray`] has a single chunk.
    pub(crate) fn match_chunks<I>(&self, chunk_id: I) -> Self
    where
        I: Iterator<Item = usize>,
    {
        debug_assert!(self.chunks.len() == 1);
        // Takes a ChunkedArray containing a single chunk.
        let slice = |ca: &Self| {
            let array = &ca.chunks[0];

            let mut offset = 0;
            let chunks = chunk_id
                .map(|len| {
                    // SAFETY: within bounds.
                    debug_assert!((offset + len) <= array.len());
                    let out = unsafe { array.sliced_unchecked(offset, len) };
                    offset += len;
                    out
                })
                .collect();

            debug_assert_eq!(offset, array.len());

            // SAFETY: We just slice the original chunks, their type will not change.
            unsafe {
                Self::from_chunks_and_dtype(self.name().clone(), chunks, self.dtype().clone())
            }
        };

        if self.chunks.len() != 1 {
            let out = self.rechunk();
            slice(&out)
        } else {
            slice(self)
        }
    }
}

impl<T: PolarsDataType> AsRefDataType for ChunkedArray<T> {
    fn as_ref_dtype(&self) -> &DataType {
        self.dtype()
    }
}

pub(crate) trait AsSinglePtr: AsRefDataType {
    /// Rechunk and return a ptr to the start of the array
    fn as_single_ptr(&mut self) -> PolarsResult<usize> {
        polars_bail!(opq = as_single_ptr, self.as_ref_dtype());
    }
}

impl<T> AsSinglePtr for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    fn as_single_ptr(&mut self) -> PolarsResult<usize> {
        let mut ca = self.rechunk();
        mem::swap(&mut ca, self);
        let a = self.data_views().next().unwrap();
        let ptr = a.as_ptr();
        Ok(ptr as usize)
    }
}

impl AsSinglePtr for BooleanChunked {}
impl AsSinglePtr for ListChunked {}
#[cfg(feature = "dtype-array")]
impl AsSinglePtr for ArrayChunked {}
impl AsSinglePtr for StringChunked {}
impl AsSinglePtr for BinaryChunked {}
#[cfg(feature = "object")]
impl<T: PolarsObject> AsSinglePtr for ObjectChunked<T> {}

pub enum ChunkedArrayLayout<'a, T: PolarsDataType> {
    SingleNoNull(&'a T::Array),
    Single(&'a T::Array),
    MultiNoNull(&'a ChunkedArray<T>),
    Multi(&'a ChunkedArray<T>),
}

impl<T> ChunkedArray<T>
where
    T: PolarsDataType,
{
    pub fn layout(&self) -> ChunkedArrayLayout<'_, T> {
        if self.chunks.len() == 1 {
            let arr = self.downcast_iter().next().unwrap();
            return if arr.null_count() == 0 {
                ChunkedArrayLayout::SingleNoNull(arr)
            } else {
                ChunkedArrayLayout::Single(arr)
            };
        }

        if self.downcast_iter().all(|a| a.null_count() == 0) {
            ChunkedArrayLayout::MultiNoNull(self)
        } else {
            ChunkedArrayLayout::Multi(self)
        }
    }
}

impl<T> ChunkedArray<T>
where
    T: PolarsNumericType,
{
    /// Returns the values of the array as a contiguous slice.
    pub fn cont_slice(&self) -> PolarsResult<&[T::Native]> {
        polars_ensure!(
            self.chunks.len() == 1 && self.chunks[0].null_count() == 0,
            ComputeError: "chunked array is not contiguous"
        );
        Ok(self.downcast_iter().next().map(|arr| arr.values()).unwrap())
    }

    /// Returns the values of the array as a contiguous mutable slice.
    pub(crate) fn cont_slice_mut(&mut self) -> Option<&mut [T::Native]> {
        if self.chunks.len() == 1 && self.chunks[0].null_count() == 0 {
            // SAFETY, we will not swap the PrimitiveArray.
            let arr = unsafe { self.downcast_iter_mut().next().unwrap() };
            arr.get_mut_values()
        } else {
            None
        }
    }

    /// Get slices of the underlying arrow data.
    /// NOTE: null values should be taken into account by the user of these slices as they are handled
    /// separately
    pub fn data_views(&self) -> impl DoubleEndedIterator<Item = &[T::Native]> {
        self.downcast_iter().map(|arr| arr.values().as_slice())
    }

    #[allow(clippy::wrong_self_convention)]
    pub fn into_no_null_iter(
        &self,
    ) -> impl '_ + Send + Sync + ExactSizeIterator<Item = T::Native> + DoubleEndedIterator + TrustedLen
    {
        // .copied was significantly slower in benchmark, next call did not inline?
        #[allow(clippy::map_clone)]
        // we know the iterators len
        unsafe {
            self.data_views()
                .flatten()
                .map(|v| *v)
                .trust_my_length(self.len())
        }
    }
}

impl<T: PolarsDataType> Clone for ChunkedArray<T> {
    fn clone(&self) -> Self {
        ChunkedArray {
            field: self.field.clone(),
            chunks: self.chunks.clone(),
            flags: self.flags.clone(),

            _pd: Default::default(),
            length: self.length,
            null_count: self.null_count,
        }
    }
}

impl<T: PolarsDataType> AsRef<ChunkedArray<T>> for ChunkedArray<T> {
    fn as_ref(&self) -> &ChunkedArray<T> {
        self
    }
}

impl ValueSize for ListChunked {
    fn get_values_size(&self) -> usize {
        self.chunks
            .iter()
            .fold(0usize, |acc, arr| acc + arr.get_values_size())
    }
}

#[cfg(feature = "dtype-array")]
impl ValueSize for ArrayChunked {
    fn get_values_size(&self) -> usize {
        self.chunks
            .iter()
            .fold(0usize, |acc, arr| acc + arr.get_values_size())
    }
}
impl ValueSize for StringChunked {
    fn get_values_size(&self) -> usize {
        self.chunks
            .iter()
            .fold(0usize, |acc, arr| acc + arr.get_values_size())
    }
}

impl ValueSize for BinaryOffsetChunked {
    fn get_values_size(&self) -> usize {
        self.chunks
            .iter()
            .fold(0usize, |acc, arr| acc + arr.get_values_size())
    }
}

pub(crate) fn to_primitive<T: PolarsNumericType>(
    values: Vec<T::Native>,
    validity: Option<Bitmap>,
) -> PrimitiveArray<T::Native> {
    PrimitiveArray::new(
        T::get_dtype().to_arrow(CompatLevel::newest()),
        values.into(),
        validity,
    )
}

pub(crate) fn to_array<T: PolarsNumericType>(
    values: Vec<T::Native>,
    validity: Option<Bitmap>,
) -> ArrayRef {
    Box::new(to_primitive::<T>(values, validity))
}

impl<T: PolarsDataType> Default for ChunkedArray<T> {
    fn default() -> Self {
        let dtype = T::get_dtype();
        let arrow_dtype = dtype.to_physical().to_arrow(CompatLevel::newest());
        ChunkedArray {
            field: Arc::new(Field::new(PlSmallStr::EMPTY, dtype)),
            // Invariant: always has 1 chunk.
            chunks: vec![new_empty_array(arrow_dtype)],
            flags: StatisticsFlagsIM::empty(),

            _pd: Default::default(),
            length: 0,
            null_count: 0,
        }
    }
}

#[cfg(test)]
pub(crate) mod test {
    use crate::prelude::*;

    pub(crate) fn get_chunked_array() -> Int32Chunked {
        ChunkedArray::new(PlSmallStr::from_static("a"), &[1, 2, 3])
    }

    #[test]
    fn test_sort() {
        let a = Int32Chunked::new(PlSmallStr::from_static("a"), &[1, 9, 3, 2]);
        let b = a
            .sort(false)
            .into_iter()
            .map(|opt| opt.unwrap())
            .collect::<Vec<_>>();
        assert_eq!(b, [1, 2, 3, 9]);
        let a = StringChunked::new(PlSmallStr::from_static("a"), &["b", "a", "c"]);
        let a = a.sort(false);
        let b = a.into_iter().collect::<Vec<_>>();
        assert_eq!(b, [Some("a"), Some("b"), Some("c")]);
        assert!(a.is_sorted_ascending_flag());
    }

    #[test]
    fn arithmetic() {
        let a = &Int32Chunked::new(PlSmallStr::from_static("a"), &[1, 100, 6, 40]);
        let b = &Int32Chunked::new(PlSmallStr::from_static("b"), &[-1, 2, 3, 4]);

        // Not really asserting anything here but still making sure the code is exercised
        // This (and more) is properly tested from the integration test suite and Python bindings.
        println!("{:?}", a + b);
        println!("{:?}", a - b);
        println!("{:?}", a * b);
        println!("{:?}", a / b);
    }

    #[test]
    fn iter() {
        let s1 = get_chunked_array();
        // sum
        assert_eq!(s1.into_iter().fold(0, |acc, val| { acc + val.unwrap() }), 6)
    }

    #[test]
    fn limit() {
        let a = get_chunked_array();
        let b = a.limit(2);
        println!("{:?}", b);
        assert_eq!(b.len(), 2)
    }

    #[test]
    fn filter() {
        let a = get_chunked_array();
        let b = a
            .filter(&BooleanChunked::new(
                PlSmallStr::from_static("filter"),
                &[true, false, false],
            ))
            .unwrap();
        assert_eq!(b.len(), 1);
        assert_eq!(b.into_iter().next(), Some(Some(1)));
    }

    #[test]
    fn aggregates() {
        let a = &Int32Chunked::new(PlSmallStr::from_static("a"), &[1, 100, 10, 9]);
        assert_eq!(a.max(), Some(100));
        assert_eq!(a.min(), Some(1));
        assert_eq!(a.sum(), Some(120))
    }

    #[test]
    fn take() {
        let a = get_chunked_array();
        let new = a.take(&[0 as IdxSize, 1]).unwrap();
        assert_eq!(new.len(), 2)
    }

    #[test]
    fn cast() {
        let a = get_chunked_array();
        let b = a.cast(&DataType::Int64).unwrap();
        assert_eq!(b.dtype(), &DataType::Int64)
    }

    fn assert_slice_equal<T>(ca: &ChunkedArray<T>, eq: &[T::Native])
    where
        T: PolarsNumericType,
    {
        assert_eq!(ca.iter().map(|opt| opt.unwrap()).collect::<Vec<_>>(), eq)
    }

    #[test]
    fn slice() {
        let mut first = UInt32Chunked::new(PlSmallStr::from_static("first"), &[0, 1, 2]);
        let second = UInt32Chunked::new(PlSmallStr::from_static("second"), &[3, 4, 5]);
        first.append(&second).unwrap();
        assert_slice_equal(&first.slice(0, 3), &[0, 1, 2]);
        assert_slice_equal(&first.slice(0, 4), &[0, 1, 2, 3]);
        assert_slice_equal(&first.slice(1, 4), &[1, 2, 3, 4]);
        assert_slice_equal(&first.slice(3, 2), &[3, 4]);
        assert_slice_equal(&first.slice(3, 3), &[3, 4, 5]);
        assert_slice_equal(&first.slice(-3, 3), &[3, 4, 5]);
        assert_slice_equal(&first.slice(-6, 6), &[0, 1, 2, 3, 4, 5]);

        assert_eq!(first.slice(-7, 2).len(), 1);
        assert_eq!(first.slice(-3, 4).len(), 3);
        assert_eq!(first.slice(3, 4).len(), 3);
        assert_eq!(first.slice(10, 4).len(), 0);
    }

    #[test]
    fn sorting() {
        let s = UInt32Chunked::new(PlSmallStr::EMPTY, &[9, 2, 4]);
        let sorted = s.sort(false);
        assert_slice_equal(&sorted, &[2, 4, 9]);
        let sorted = s.sort(true);
        assert_slice_equal(&sorted, &[9, 4, 2]);

        let s: StringChunked = ["b", "a", "z"].iter().collect();
        let sorted = s.sort(false);
        assert_eq!(
            sorted.into_iter().collect::<Vec<_>>(),
            &[Some("a"), Some("b"), Some("z")]
        );
        let sorted = s.sort(true);
        assert_eq!(
            sorted.into_iter().collect::<Vec<_>>(),
            &[Some("z"), Some("b"), Some("a")]
        );
        let s: StringChunked = [Some("b"), None, Some("z")].iter().copied().collect();
        let sorted = s.sort(false);
        assert_eq!(
            sorted.into_iter().collect::<Vec<_>>(),
            &[None, Some("b"), Some("z")]
        );
    }

    #[test]
    fn reverse() {
        let s = UInt32Chunked::new(PlSmallStr::EMPTY, &[1, 2, 3]);
        // path with continuous slice
        assert_slice_equal(&s.reverse(), &[3, 2, 1]);
        // path with options
        let s = UInt32Chunked::new(PlSmallStr::EMPTY, &[Some(1), None, Some(3)]);
        assert_eq!(Vec::from(&s.reverse()), &[Some(3), None, Some(1)]);
        let s = BooleanChunked::new(PlSmallStr::EMPTY, &[true, false]);
        assert_eq!(Vec::from(&s.reverse()), &[Some(false), Some(true)]);

        let s = StringChunked::new(PlSmallStr::EMPTY, &["a", "b", "c"]);
        assert_eq!(Vec::from(&s.reverse()), &[Some("c"), Some("b"), Some("a")]);

        let s = StringChunked::new(PlSmallStr::EMPTY, &[Some("a"), None, Some("c")]);
        assert_eq!(Vec::from(&s.reverse()), &[Some("c"), None, Some("a")]);
    }

    #[test]
    #[cfg(feature = "dtype-categorical")]
    fn test_iter_categorical() {
        use crate::{disable_string_cache, SINGLE_LOCK};
        let _lock = SINGLE_LOCK.lock();
        disable_string_cache();
        let ca = StringChunked::new(
            PlSmallStr::EMPTY,
            &[Some("foo"), None, Some("bar"), Some("ham")],
        );
        let ca = ca
            .cast(&DataType::Categorical(None, Default::default()))
            .unwrap();
        let ca = ca.categorical().unwrap();
        let v: Vec<_> = ca.physical().into_iter().collect();
        assert_eq!(v, &[Some(0), None, Some(1), Some(2)]);
    }

    #[test]
    #[ignore]
    fn test_shrink_to_fit() {
        let mut builder = StringChunkedBuilder::new(PlSmallStr::from_static("foo"), 2048);
        builder.append_value("foo");
        let mut arr = builder.finish();
        let before = arr
            .chunks()
            .iter()
            .map(|arr| arrow::compute::aggregate::estimated_bytes_size(arr.as_ref()))
            .sum::<usize>();
        arr.shrink_to_fit();
        let after = arr
            .chunks()
            .iter()
            .map(|arr| arrow::compute::aggregate::estimated_bytes_size(arr.as_ref()))
            .sum::<usize>();
        assert!(before > after);
    }
}