polars_ops/frame/join/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
mod args;
#[cfg(feature = "asof_join")]
mod asof;
#[cfg(feature = "dtype-categorical")]
mod checks;
mod cross_join;
mod dispatch_left_right;
mod general;
mod hash_join;
#[cfg(feature = "iejoin")]
mod iejoin;
#[cfg(feature = "merge_sorted")]
mod merge_sorted;
use std::borrow::Cow;
use std::fmt::{Debug, Display, Formatter};
use std::hash::Hash;
pub use args::*;
use arrow::trusted_len::TrustedLen;
#[cfg(feature = "asof_join")]
pub use asof::{AsOfOptions, AsofJoin, AsofJoinBy, AsofStrategy};
#[cfg(feature = "dtype-categorical")]
pub(crate) use checks::*;
pub use cross_join::CrossJoin;
#[cfg(feature = "chunked_ids")]
use either::Either;
#[cfg(feature = "chunked_ids")]
use general::create_chunked_index_mapping;
pub use general::{_coalesce_full_join, _finish_join, _join_suffix_name};
pub use hash_join::*;
use hashbrown::hash_map::{Entry, RawEntryMut};
#[cfg(feature = "iejoin")]
pub use iejoin::{IEJoinOptions, InequalityOperator};
#[cfg(feature = "merge_sorted")]
pub use merge_sorted::_merge_sorted_dfs;
#[allow(unused_imports)]
use polars_core::chunked_array::ops::row_encode::{
encode_rows_vertical_par_unordered, encode_rows_vertical_par_unordered_broadcast_nulls,
};
use polars_core::hashing::_HASHMAP_INIT_SIZE;
use polars_core::prelude::*;
pub(super) use polars_core::series::IsSorted;
use polars_core::utils::slice_offsets;
#[allow(unused_imports)]
use polars_core::utils::slice_slice;
use polars_core::POOL;
use polars_utils::hashing::BytesHash;
use rayon::prelude::*;
use self::cross_join::fused_cross_filter;
use super::IntoDf;
pub trait DataFrameJoinOps: IntoDf {
/// Generic join method. Can be used to join on multiple columns.
///
/// # Example
///
/// ```no_run
/// # use polars_core::prelude::*;
/// # use polars_ops::prelude::*;
/// let df1: DataFrame = df!("Fruit" => &["Apple", "Banana", "Pear"],
/// "Phosphorus (mg/100g)" => &[11, 22, 12])?;
/// let df2: DataFrame = df!("Name" => &["Apple", "Banana", "Pear"],
/// "Potassium (mg/100g)" => &[107, 358, 115])?;
///
/// let df3: DataFrame = df1.join(&df2, ["Fruit"], ["Name"], JoinArgs::new(JoinType::Inner),
/// None)?;
/// assert_eq!(df3.shape(), (3, 3));
/// println!("{}", df3);
/// # Ok::<(), PolarsError>(())
/// ```
///
/// Output:
///
/// ```text
/// shape: (3, 3)
/// +--------+----------------------+---------------------+
/// | Fruit | Phosphorus (mg/100g) | Potassium (mg/100g) |
/// | --- | --- | --- |
/// | str | i32 | i32 |
/// +========+======================+=====================+
/// | Apple | 11 | 107 |
/// +--------+----------------------+---------------------+
/// | Banana | 22 | 358 |
/// +--------+----------------------+---------------------+
/// | Pear | 12 | 115 |
/// +--------+----------------------+---------------------+
/// ```
fn join(
&self,
other: &DataFrame,
left_on: impl IntoIterator<Item = impl Into<PlSmallStr>>,
right_on: impl IntoIterator<Item = impl Into<PlSmallStr>>,
args: JoinArgs,
options: Option<JoinTypeOptions>,
) -> PolarsResult<DataFrame> {
let df_left = self.to_df();
let selected_left = df_left.select_columns(left_on)?;
let selected_right = other.select_columns(right_on)?;
let selected_left = selected_left
.into_iter()
.map(Column::take_materialized_series)
.collect::<Vec<_>>();
let selected_right = selected_right
.into_iter()
.map(Column::take_materialized_series)
.collect::<Vec<_>>();
self._join_impl(
other,
selected_left,
selected_right,
args,
options,
true,
false,
)
}
#[doc(hidden)]
#[allow(clippy::too_many_arguments)]
#[allow(unused_mut)]
fn _join_impl(
&self,
other: &DataFrame,
mut selected_left: Vec<Series>,
mut selected_right: Vec<Series>,
mut args: JoinArgs,
options: Option<JoinTypeOptions>,
_check_rechunk: bool,
_verbose: bool,
) -> PolarsResult<DataFrame> {
let left_df = self.to_df();
#[cfg(feature = "cross_join")]
if let JoinType::Cross = args.how {
if let Some(JoinTypeOptions::Cross(cross_options)) = &options {
assert!(args.slice.is_none());
return fused_cross_filter(left_df, other, args.suffix.clone(), cross_options);
}
return left_df.cross_join(other, args.suffix.clone(), args.slice);
}
// Clear literals if a frame is empty. Otherwise we could get an oob
fn clear(s: &mut [Series]) {
for s in s.iter_mut() {
if s.len() == 1 {
*s = s.clear()
}
}
}
if left_df.is_empty() {
clear(&mut selected_left);
}
if other.is_empty() {
clear(&mut selected_right);
}
let should_coalesce = args.should_coalesce();
assert_eq!(selected_left.len(), selected_right.len());
#[cfg(feature = "chunked_ids")]
{
// a left join create chunked-ids
// the others not yet.
// TODO! change this to other join types once they support chunked-id joins
if _check_rechunk
&& !(matches!(args.how, JoinType::Left)
|| std::env::var("POLARS_NO_CHUNKED_JOIN").is_ok())
{
let mut left = Cow::Borrowed(left_df);
let mut right = Cow::Borrowed(other);
if left_df.should_rechunk() {
if _verbose {
eprintln!("{:?} join triggered a rechunk of the left DataFrame: {} columns are affected", args.how, left_df.width());
}
let mut tmp_left = left_df.clone();
tmp_left.as_single_chunk_par();
left = Cow::Owned(tmp_left);
}
if other.should_rechunk() {
if _verbose {
eprintln!("{:?} join triggered a rechunk of the right DataFrame: {} columns are affected", args.how, other.width());
}
let mut tmp_right = other.clone();
tmp_right.as_single_chunk_par();
right = Cow::Owned(tmp_right);
}
return left._join_impl(
&right,
selected_left,
selected_right,
args,
options,
false,
_verbose,
);
}
}
if let Some((l, r)) = selected_left
.iter()
.zip(&selected_right)
.find(|(l, r)| l.dtype() != r.dtype())
{
polars_bail!(
ComputeError:
format!(
"datatypes of join keys don't match - `{}`: {} on left does not match `{}`: {} on right",
l.name(), l.dtype(), r.name(), r.dtype()
)
);
};
#[cfg(feature = "dtype-categorical")]
for (l, r) in selected_left.iter_mut().zip(selected_right.iter_mut()) {
match _check_categorical_src(l.dtype(), r.dtype()) {
Ok(_) => {},
Err(_) => {
let (ca_left, ca_right) =
make_categoricals_compatible(l.categorical()?, r.categorical()?)?;
*l = ca_left.into_series().with_name(l.name().clone());
*r = ca_right.into_series().with_name(r.name().clone());
},
}
}
#[cfg(feature = "iejoin")]
if let JoinType::IEJoin = args.how {
let Some(JoinTypeOptions::IEJoin(options)) = options else {
unreachable!()
};
let func = if POOL.current_num_threads() > 1 && !left_df.is_empty() && !other.is_empty()
{
iejoin::iejoin_par
} else {
iejoin::iejoin
};
return func(
left_df,
other,
selected_left,
selected_right,
&options,
args.suffix,
args.slice,
);
}
// Single keys.
if selected_left.len() == 1 {
let s_left = &selected_left[0];
let s_right = &selected_right[0];
let drop_names: Option<Vec<PlSmallStr>> =
if should_coalesce { None } else { Some(vec![]) };
return match args.how {
JoinType::Inner => left_df
._inner_join_from_series(other, s_left, s_right, args, _verbose, drop_names),
JoinType::Left => dispatch_left_right::left_join_from_series(
self.to_df().clone(),
other,
s_left,
s_right,
args,
_verbose,
drop_names,
),
JoinType::Right => dispatch_left_right::right_join_from_series(
self.to_df(),
other.clone(),
s_left,
s_right,
args,
_verbose,
drop_names,
),
JoinType::Full => left_df._full_join_from_series(other, s_left, s_right, args),
#[cfg(feature = "semi_anti_join")]
JoinType::Anti => left_df._semi_anti_join_from_series(
s_left,
s_right,
args.slice,
true,
args.join_nulls,
),
#[cfg(feature = "semi_anti_join")]
JoinType::Semi => left_df._semi_anti_join_from_series(
s_left,
s_right,
args.slice,
false,
args.join_nulls,
),
#[cfg(feature = "asof_join")]
JoinType::AsOf(options) => match (options.left_by, options.right_by) {
(Some(left_by), Some(right_by)) => left_df._join_asof_by(
other,
s_left,
s_right,
left_by,
right_by,
options.strategy,
options.tolerance,
args.suffix.clone(),
args.slice,
should_coalesce,
),
(None, None) => left_df._join_asof(
other,
s_left,
s_right,
options.strategy,
options.tolerance,
args.suffix,
args.slice,
should_coalesce,
),
_ => {
panic!("expected by arguments on both sides")
},
},
#[cfg(feature = "iejoin")]
JoinType::IEJoin => {
unreachable!()
},
JoinType::Cross => {
unreachable!()
},
};
}
let lhs_keys = prepare_keys_multiple(&selected_left, args.join_nulls)?.into_series();
let rhs_keys = prepare_keys_multiple(&selected_right, args.join_nulls)?.into_series();
let drop_names = if should_coalesce {
selected_right
.iter()
.map(|s| s.name().clone())
.collect::<Vec<_>>()
} else {
vec![]
};
// Multiple keys.
match args.how {
#[cfg(feature = "asof_join")]
JoinType::AsOf(_) => polars_bail!(
ComputeError: "asof join not supported for join on multiple keys"
),
#[cfg(feature = "iejoin")]
JoinType::IEJoin => {
unreachable!()
},
JoinType::Cross => {
unreachable!()
},
JoinType::Full => {
let names_left = selected_left
.iter()
.map(|s| s.name().clone())
.collect::<Vec<_>>();
args.coalesce = JoinCoalesce::KeepColumns;
let suffix = args.suffix.clone();
let out = left_df._full_join_from_series(other, &lhs_keys, &rhs_keys, args);
if should_coalesce {
Ok(_coalesce_full_join(
out?,
names_left.as_slice(),
drop_names.as_slice(),
suffix.clone(),
left_df,
))
} else {
out
}
},
JoinType::Inner => left_df._inner_join_from_series(
other,
&lhs_keys,
&rhs_keys,
args,
_verbose,
Some(drop_names),
),
JoinType::Left => dispatch_left_right::left_join_from_series(
left_df.clone(),
other,
&lhs_keys,
&rhs_keys,
args,
_verbose,
Some(drop_names),
),
JoinType::Right => dispatch_left_right::right_join_from_series(
left_df,
other.clone(),
&lhs_keys,
&rhs_keys,
args,
_verbose,
Some(drop_names),
),
#[cfg(feature = "semi_anti_join")]
JoinType::Anti | JoinType::Semi => self._join_impl(
other,
vec![lhs_keys],
vec![rhs_keys],
args,
options,
_check_rechunk,
_verbose,
),
}
}
/// Perform an inner join on two DataFrames.
///
/// # Example
///
/// ```
/// # use polars_core::prelude::*;
/// # use polars_ops::prelude::*;
/// fn join_dfs(left: &DataFrame, right: &DataFrame) -> PolarsResult<DataFrame> {
/// left.inner_join(right, ["join_column_left"], ["join_column_right"])
/// }
/// ```
fn inner_join(
&self,
other: &DataFrame,
left_on: impl IntoIterator<Item = impl Into<PlSmallStr>>,
right_on: impl IntoIterator<Item = impl Into<PlSmallStr>>,
) -> PolarsResult<DataFrame> {
self.join(
other,
left_on,
right_on,
JoinArgs::new(JoinType::Inner),
None,
)
}
/// Perform a left outer join on two DataFrames
/// # Example
///
/// ```no_run
/// # use polars_core::prelude::*;
/// # use polars_ops::prelude::*;
/// let df1: DataFrame = df!("Wavelength (nm)" => &[480.0, 650.0, 577.0, 1201.0, 100.0])?;
/// let df2: DataFrame = df!("Color" => &["Blue", "Yellow", "Red"],
/// "Wavelength nm" => &[480.0, 577.0, 650.0])?;
///
/// let df3: DataFrame = df1.left_join(&df2, ["Wavelength (nm)"], ["Wavelength nm"])?;
/// println!("{:?}", df3);
/// # Ok::<(), PolarsError>(())
/// ```
///
/// Output:
///
/// ```text
/// shape: (5, 2)
/// +-----------------+--------+
/// | Wavelength (nm) | Color |
/// | --- | --- |
/// | f64 | str |
/// +=================+========+
/// | 480 | Blue |
/// +-----------------+--------+
/// | 650 | Red |
/// +-----------------+--------+
/// | 577 | Yellow |
/// +-----------------+--------+
/// | 1201 | null |
/// +-----------------+--------+
/// | 100 | null |
/// +-----------------+--------+
/// ```
fn left_join(
&self,
other: &DataFrame,
left_on: impl IntoIterator<Item = impl Into<PlSmallStr>>,
right_on: impl IntoIterator<Item = impl Into<PlSmallStr>>,
) -> PolarsResult<DataFrame> {
self.join(
other,
left_on,
right_on,
JoinArgs::new(JoinType::Left),
None,
)
}
/// Perform a full outer join on two DataFrames
/// # Example
///
/// ```
/// # use polars_core::prelude::*;
/// # use polars_ops::prelude::*;
/// fn join_dfs(left: &DataFrame, right: &DataFrame) -> PolarsResult<DataFrame> {
/// left.full_join(right, ["join_column_left"], ["join_column_right"])
/// }
/// ```
fn full_join(
&self,
other: &DataFrame,
left_on: impl IntoIterator<Item = impl Into<PlSmallStr>>,
right_on: impl IntoIterator<Item = impl Into<PlSmallStr>>,
) -> PolarsResult<DataFrame> {
self.join(
other,
left_on,
right_on,
JoinArgs::new(JoinType::Full),
None,
)
}
}
trait DataFrameJoinOpsPrivate: IntoDf {
fn _inner_join_from_series(
&self,
other: &DataFrame,
s_left: &Series,
s_right: &Series,
args: JoinArgs,
verbose: bool,
drop_names: Option<Vec<PlSmallStr>>,
) -> PolarsResult<DataFrame> {
let left_df = self.to_df();
#[cfg(feature = "dtype-categorical")]
_check_categorical_src(s_left.dtype(), s_right.dtype())?;
let ((join_tuples_left, join_tuples_right), sorted) =
_sort_or_hash_inner(s_left, s_right, verbose, args.validation, args.join_nulls)?;
let mut join_tuples_left = &*join_tuples_left;
let mut join_tuples_right = &*join_tuples_right;
if let Some((offset, len)) = args.slice {
join_tuples_left = slice_slice(join_tuples_left, offset, len);
join_tuples_right = slice_slice(join_tuples_right, offset, len);
}
let other = if let Some(drop_names) = drop_names {
other.drop_many(drop_names)
} else {
other.drop(s_right.name()).unwrap()
};
let mut left = unsafe { IdxCa::mmap_slice("a".into(), join_tuples_left) };
if sorted {
left.set_sorted_flag(IsSorted::Ascending);
}
let right = unsafe { IdxCa::mmap_slice("b".into(), join_tuples_right) };
let already_left_sorted = sorted
&& matches!(
args.maintain_order,
MaintainOrderJoin::Left | MaintainOrderJoin::LeftRight
);
let (df_left, df_right) =
if args.maintain_order != MaintainOrderJoin::None && !already_left_sorted {
let mut df =
DataFrame::new(vec![left.into_series().into(), right.into_series().into()])?;
let columns = match args.maintain_order {
MaintainOrderJoin::Left | MaintainOrderJoin::LeftRight => vec!["a"],
MaintainOrderJoin::Right | MaintainOrderJoin::RightLeft => vec!["b"],
_ => unreachable!(),
};
let options = SortMultipleOptions::new()
.with_order_descending(false)
.with_maintain_order(true);
df.sort_in_place(columns, options)?;
let [mut a, b]: [Column; 2] = df.take_columns().try_into().unwrap();
if matches!(
args.maintain_order,
MaintainOrderJoin::Left | MaintainOrderJoin::LeftRight
) {
a.set_sorted_flag(IsSorted::Ascending);
}
POOL.join(
// SAFETY: join indices are known to be in bounds
|| unsafe { left_df.take_unchecked(a.idx().unwrap()) },
|| unsafe { other.take_unchecked(b.idx().unwrap()) },
)
} else {
POOL.join(
// SAFETY: join indices are known to be in bounds
|| unsafe { left_df.take_unchecked(left.into_series().idx().unwrap()) },
|| unsafe { other.take_unchecked(right.into_series().idx().unwrap()) },
)
};
_finish_join(df_left, df_right, args.suffix.clone())
}
}
impl DataFrameJoinOps for DataFrame {}
impl DataFrameJoinOpsPrivate for DataFrame {}
fn prepare_keys_multiple(s: &[Series], join_nulls: bool) -> PolarsResult<BinaryOffsetChunked> {
let keys = s
.iter()
.map(|s| {
let phys = s.to_physical_repr();
match phys.dtype() {
DataType::Float32 => phys.f32().unwrap().to_canonical().into_column(),
DataType::Float64 => phys.f64().unwrap().to_canonical().into_column(),
_ => phys.into_owned().into_column(),
}
})
.collect::<Vec<_>>();
if join_nulls {
encode_rows_vertical_par_unordered(&keys)
} else {
encode_rows_vertical_par_unordered_broadcast_nulls(&keys)
}
}
pub fn private_left_join_multiple_keys(
a: &DataFrame,
b: &DataFrame,
join_nulls: bool,
) -> PolarsResult<LeftJoinIds> {
// @scalar-opt
let a_cols = a
.get_columns()
.iter()
.map(|c| c.as_materialized_series().clone())
.collect::<Vec<_>>();
let b_cols = b
.get_columns()
.iter()
.map(|c| c.as_materialized_series().clone())
.collect::<Vec<_>>();
let a = prepare_keys_multiple(&a_cols, join_nulls)?.into_series();
let b = prepare_keys_multiple(&b_cols, join_nulls)?.into_series();
sort_or_hash_left(&a, &b, false, JoinValidation::ManyToMany, join_nulls)
}