polars_core/chunked_array/ops/
row_encode.rs1use std::borrow::Cow;
2
3use arrow::compute::utils::combine_validities_and_many;
4use polars_row::{RowEncodingContext, RowEncodingOptions, RowsEncoded, convert_columns};
5use rayon::prelude::*;
6
7use crate::POOL;
8use crate::prelude::*;
9use crate::utils::_split_offsets;
10
11pub fn encode_rows_vertical_par_unordered(by: &[Column]) -> PolarsResult<BinaryOffsetChunked> {
12 let n_threads = POOL.current_num_threads();
13 let len = by[0].len();
14 let splits = _split_offsets(len, n_threads);
15
16 let chunks = splits.into_par_iter().map(|(offset, len)| {
17 let sliced = by
18 .iter()
19 .map(|s| s.slice(offset as i64, len))
20 .collect::<Vec<_>>();
21 let rows = _get_rows_encoded_unordered(&sliced)?;
22 Ok(rows.into_array())
23 });
24 let chunks = POOL.install(|| chunks.collect::<PolarsResult<Vec<_>>>());
25
26 Ok(BinaryOffsetChunked::from_chunk_iter(
27 PlSmallStr::EMPTY,
28 chunks?,
29 ))
30}
31
32pub fn encode_rows_vertical_par_unordered_broadcast_nulls(
34 by: &[Column],
35) -> PolarsResult<BinaryOffsetChunked> {
36 let n_threads = POOL.current_num_threads();
37 let len = by[0].len();
38 let splits = _split_offsets(len, n_threads);
39
40 let chunks = splits.into_par_iter().map(|(offset, len)| {
41 let sliced = by
42 .iter()
43 .map(|s| s.slice(offset as i64, len))
44 .collect::<Vec<_>>();
45 let rows = _get_rows_encoded_unordered(&sliced)?;
46
47 let validities = sliced
48 .iter()
49 .flat_map(|s| {
50 let s = s.rechunk();
51 #[allow(clippy::unnecessary_to_owned)]
52 s.as_materialized_series()
53 .chunks()
54 .to_vec()
55 .into_iter()
56 .map(|arr| arr.validity().cloned())
57 })
58 .collect::<Vec<_>>();
59
60 let validity = combine_validities_and_many(&validities);
61 Ok(rows.into_array().with_validity_typed(validity))
62 });
63 let chunks = POOL.install(|| chunks.collect::<PolarsResult<Vec<_>>>());
64
65 Ok(BinaryOffsetChunked::from_chunk_iter(
66 PlSmallStr::EMPTY,
67 chunks?,
68 ))
69}
70
71pub fn get_row_encoding_context(dtype: &DataType) -> Option<RowEncodingContext> {
76 match dtype {
77 DataType::Boolean
78 | DataType::UInt8
79 | DataType::UInt16
80 | DataType::UInt32
81 | DataType::UInt64
82 | DataType::Int8
83 | DataType::Int16
84 | DataType::Int32
85 | DataType::Int64
86 | DataType::Int128
87 | DataType::Float32
88 | DataType::Float64
89 | DataType::String
90 | DataType::Binary
91 | DataType::BinaryOffset
92 | DataType::Null
93 | DataType::Time
94 | DataType::Date
95 | DataType::Datetime(_, _)
96 | DataType::Duration(_) => None,
97
98 #[cfg(feature = "dtype-categorical")]
99 DataType::Categorical(_, mapping) | DataType::Enum(_, mapping) => {
100 use polars_row::RowEncodingCategoricalContext;
101
102 Some(RowEncodingContext::Categorical(
103 RowEncodingCategoricalContext {
104 is_enum: matches!(dtype, DataType::Enum(_, _)),
105 mapping: mapping.clone(),
106 },
107 ))
108 },
109
110 DataType::Unknown(_) => panic!("Unsupported in row encoding"),
111
112 #[cfg(feature = "object")]
113 DataType::Object(_) => panic!("Unsupported in row encoding"),
114
115 #[cfg(feature = "dtype-decimal")]
116 DataType::Decimal(precision, _) => {
117 Some(RowEncodingContext::Decimal(precision.unwrap_or(38)))
118 },
119
120 #[cfg(feature = "dtype-array")]
121 DataType::Array(dtype, _) => get_row_encoding_context(dtype),
122 DataType::List(dtype) => get_row_encoding_context(dtype),
123 #[cfg(feature = "dtype-struct")]
124 DataType::Struct(fs) => {
125 let mut ctxts = Vec::new();
126
127 for (i, f) in fs.iter().enumerate() {
128 if let Some(ctxt) = get_row_encoding_context(f.dtype()) {
129 ctxts.reserve(fs.len());
130 ctxts.extend(std::iter::repeat_n(None, i));
131 ctxts.push(Some(ctxt));
132 break;
133 }
134 }
135
136 if ctxts.is_empty() {
137 return None;
138 }
139
140 ctxts.extend(
141 fs[ctxts.len()..]
142 .iter()
143 .map(|f| get_row_encoding_context(f.dtype())),
144 );
145
146 Some(RowEncodingContext::Struct(ctxts))
147 },
148 }
149}
150
151pub fn encode_rows_unordered(by: &[Column]) -> PolarsResult<BinaryOffsetChunked> {
152 let rows = _get_rows_encoded_unordered(by)?;
153 Ok(BinaryOffsetChunked::with_chunk(
154 PlSmallStr::EMPTY,
155 rows.into_array(),
156 ))
157}
158
159pub fn _get_rows_encoded_unordered(by: &[Column]) -> PolarsResult<RowsEncoded> {
160 let mut cols = Vec::with_capacity(by.len());
161 let mut opts = Vec::with_capacity(by.len());
162 let mut ctxts = Vec::with_capacity(by.len());
163
164 let num_rows = by.first().map_or(0, |c| c.len());
167
168 for by in by {
169 debug_assert_eq!(by.len(), num_rows);
170
171 let by = by
172 .trim_lists_to_normalized_offsets()
173 .map_or(Cow::Borrowed(by), Cow::Owned);
174 let by = by.propagate_nulls().map_or(by, Cow::Owned);
175 let by = by.as_materialized_series();
176 let arr = by.to_physical_repr().rechunk().chunks()[0].to_boxed();
177 let opt = RowEncodingOptions::new_unsorted();
178 let ctxt = get_row_encoding_context(by.dtype());
179
180 cols.push(arr);
181 opts.push(opt);
182 ctxts.push(ctxt);
183 }
184 Ok(convert_columns(num_rows, &cols, &opts, &ctxts))
185}
186
187pub fn _get_rows_encoded(
188 by: &[Column],
189 descending: &[bool],
190 nulls_last: &[bool],
191) -> PolarsResult<RowsEncoded> {
192 debug_assert_eq!(by.len(), descending.len());
193 debug_assert_eq!(by.len(), nulls_last.len());
194
195 let mut cols = Vec::with_capacity(by.len());
196 let mut opts = Vec::with_capacity(by.len());
197 let mut ctxts = Vec::with_capacity(by.len());
198
199 let num_rows = by.first().map_or(0, |c| c.len());
202
203 for ((by, desc), null_last) in by.iter().zip(descending).zip(nulls_last) {
204 debug_assert_eq!(by.len(), num_rows);
205
206 let by = by
207 .trim_lists_to_normalized_offsets()
208 .map_or(Cow::Borrowed(by), Cow::Owned);
209 let by = by.propagate_nulls().map_or(by, Cow::Owned);
210 let by = by.as_materialized_series();
211 let arr = by.to_physical_repr().rechunk().chunks()[0].to_boxed();
212 let opt = RowEncodingOptions::new_sorted(*desc, *null_last);
213 let ctxt = get_row_encoding_context(by.dtype());
214
215 cols.push(arr);
216 opts.push(opt);
217 ctxts.push(ctxt);
218 }
219 Ok(convert_columns(num_rows, &cols, &opts, &ctxts))
220}
221
222pub fn _get_rows_encoded_ca(
223 name: PlSmallStr,
224 by: &[Column],
225 descending: &[bool],
226 nulls_last: &[bool],
227) -> PolarsResult<BinaryOffsetChunked> {
228 _get_rows_encoded(by, descending, nulls_last)
229 .map(|rows| BinaryOffsetChunked::with_chunk(name, rows.into_array()))
230}
231
232pub fn _get_rows_encoded_arr(
233 by: &[Column],
234 descending: &[bool],
235 nulls_last: &[bool],
236) -> PolarsResult<BinaryArray<i64>> {
237 _get_rows_encoded(by, descending, nulls_last).map(|rows| rows.into_array())
238}
239
240pub fn _get_rows_encoded_ca_unordered(
241 name: PlSmallStr,
242 by: &[Column],
243) -> PolarsResult<BinaryOffsetChunked> {
244 _get_rows_encoded_unordered(by)
245 .map(|rows| BinaryOffsetChunked::with_chunk(name, rows.into_array()))
246}
247
248#[cfg(feature = "dtype-struct")]
249pub fn row_encoding_decode(
250 ca: &BinaryOffsetChunked,
251 fields: &[Field],
252 opts: &[RowEncodingOptions],
253) -> PolarsResult<StructChunked> {
254 let (ctxts, dtypes) = fields
255 .iter()
256 .map(|f| {
257 (
258 get_row_encoding_context(f.dtype()),
259 f.dtype().to_physical().to_arrow(CompatLevel::newest()),
260 )
261 })
262 .collect::<(Vec<_>, Vec<_>)>();
263
264 let struct_arrow_dtype = ArrowDataType::Struct(
265 fields
266 .iter()
267 .map(|v| v.to_physical().to_arrow(CompatLevel::newest()))
268 .collect(),
269 );
270
271 let mut rows = Vec::new();
272 let chunks = ca
273 .downcast_iter()
274 .map(|array| {
275 let decoded_arrays = unsafe {
276 polars_row::decode::decode_rows_from_binary(array, opts, &ctxts, &dtypes, &mut rows)
277 };
278 assert_eq!(decoded_arrays.len(), fields.len());
279
280 StructArray::new(
281 struct_arrow_dtype.clone(),
282 array.len(),
283 decoded_arrays,
284 None,
285 )
286 .to_boxed()
287 })
288 .collect::<Vec<_>>();
289
290 Ok(unsafe {
291 StructChunked::from_chunks_and_dtype(
292 ca.name().clone(),
293 chunks,
294 DataType::Struct(fields.to_vec()),
295 )
296 })
297}