polars_core/chunked_array/ops/
row_encode.rsuse arrow::compute::utils::combine_validities_and_many;
use polars_row::{convert_columns, EncodingField, RowsEncoded};
use rayon::prelude::*;
use crate::prelude::*;
use crate::utils::_split_offsets;
use crate::POOL;
pub(crate) fn convert_series_for_row_encoding(s: &Series) -> PolarsResult<Series> {
use DataType::*;
let out = match s.dtype() {
#[cfg(feature = "dtype-categorical")]
Categorical(_, _) | Enum(_, _) => s.rechunk(),
Binary | Boolean => s.clone(),
BinaryOffset => s.clone(),
String => s.str().unwrap().as_binary().into_series(),
#[cfg(feature = "dtype-struct")]
Struct(_) => {
let ca = s.struct_().unwrap();
let new_fields = ca
.fields_as_series()
.iter()
.map(convert_series_for_row_encoding)
.collect::<PolarsResult<Vec<_>>>()?;
let mut out =
StructChunked::from_series(ca.name().clone(), ca.len(), new_fields.iter())?;
out.zip_outer_validity(ca);
out.into_series()
},
#[cfg(feature = "dtype-decimal")]
Decimal(_, _) => s.clone(),
List(inner) if !inner.is_nested() => s.clone(),
Null => s.clone(),
_ => {
let phys = s.to_physical_repr().into_owned();
polars_ensure!(
phys.dtype().is_numeric(),
InvalidOperation: "cannot sort column of dtype `{}`", s.dtype()
);
phys
},
};
Ok(out)
}
pub fn _get_rows_encoded_compat_array(by: &Series) -> PolarsResult<ArrayRef> {
let by = convert_series_for_row_encoding(by)?;
let by = by.rechunk();
let out = match by.dtype() {
#[cfg(feature = "dtype-categorical")]
DataType::Categorical(_, _) | DataType::Enum(_, _) => {
let ca = by.categorical().unwrap();
if ca.uses_lexical_ordering() {
by.to_arrow(0, CompatLevel::newest())
} else {
ca.physical().chunks[0].clone()
}
},
_ => by.chunks()[0].clone(),
};
Ok(out)
}
pub fn encode_rows_vertical_par_unordered(by: &[Series]) -> PolarsResult<BinaryOffsetChunked> {
let n_threads = POOL.current_num_threads();
let len = by[0].len();
let splits = _split_offsets(len, n_threads);
let chunks = splits.into_par_iter().map(|(offset, len)| {
let sliced = by
.iter()
.map(|s| s.slice(offset as i64, len))
.collect::<Vec<_>>();
let rows = _get_rows_encoded_unordered(&sliced)?;
Ok(rows.into_array())
});
let chunks = POOL.install(|| chunks.collect::<PolarsResult<Vec<_>>>());
Ok(BinaryOffsetChunked::from_chunk_iter(
PlSmallStr::EMPTY,
chunks?,
))
}
pub fn encode_rows_vertical_par_unordered_broadcast_nulls(
by: &[Series],
) -> PolarsResult<BinaryOffsetChunked> {
let n_threads = POOL.current_num_threads();
let len = by[0].len();
let splits = _split_offsets(len, n_threads);
let chunks = splits.into_par_iter().map(|(offset, len)| {
let sliced = by
.iter()
.map(|s| s.slice(offset as i64, len))
.collect::<Vec<_>>();
let rows = _get_rows_encoded_unordered(&sliced)?;
let validities = sliced
.iter()
.flat_map(|s| {
let s = s.rechunk();
#[allow(clippy::unnecessary_to_owned)]
s.chunks()
.to_vec()
.into_iter()
.map(|arr| arr.validity().cloned())
})
.collect::<Vec<_>>();
let validity = combine_validities_and_many(&validities);
Ok(rows.into_array().with_validity_typed(validity))
});
let chunks = POOL.install(|| chunks.collect::<PolarsResult<Vec<_>>>());
Ok(BinaryOffsetChunked::from_chunk_iter(
PlSmallStr::EMPTY,
chunks?,
))
}
pub fn encode_rows_unordered(by: &[Series]) -> PolarsResult<BinaryOffsetChunked> {
let rows = _get_rows_encoded_unordered(by)?;
Ok(BinaryOffsetChunked::with_chunk(
PlSmallStr::EMPTY,
rows.into_array(),
))
}
pub fn _get_rows_encoded_unordered(by: &[Series]) -> PolarsResult<RowsEncoded> {
let mut cols = Vec::with_capacity(by.len());
let mut fields = Vec::with_capacity(by.len());
let num_rows = by.first().map_or(0, |c| c.len());
for by in by {
debug_assert_eq!(by.len(), num_rows);
let arr = _get_rows_encoded_compat_array(by)?;
let field = EncodingField::new_unsorted();
match arr.dtype() {
ArrowDataType::Struct(_) => {
let arr = arr.as_any().downcast_ref::<StructArray>().unwrap();
for arr in arr.values() {
cols.push(arr.clone() as ArrayRef);
fields.push(field)
}
},
_ => {
cols.push(arr);
fields.push(field)
},
}
}
Ok(convert_columns(num_rows, &cols, &fields))
}
pub fn _get_rows_encoded(
by: &[Column],
descending: &[bool],
nulls_last: &[bool],
) -> PolarsResult<RowsEncoded> {
debug_assert_eq!(by.len(), descending.len());
debug_assert_eq!(by.len(), nulls_last.len());
let mut cols = Vec::with_capacity(by.len());
let mut fields = Vec::with_capacity(by.len());
let num_rows = by.first().map_or(0, |c| c.len());
for ((by, desc), null_last) in by.iter().zip(descending).zip(nulls_last) {
debug_assert_eq!(by.len(), num_rows);
let by = by.as_materialized_series();
let arr = _get_rows_encoded_compat_array(by)?;
let sort_field = EncodingField {
descending: *desc,
nulls_last: *null_last,
no_order: false,
};
match arr.dtype() {
ArrowDataType::Struct(_) => {
let arr = arr.as_any().downcast_ref::<StructArray>().unwrap();
let arr = arr.propagate_nulls();
for value_arr in arr.values() {
cols.push(value_arr.clone() as ArrayRef);
fields.push(sort_field);
}
},
_ => {
cols.push(arr);
fields.push(sort_field);
},
}
}
Ok(convert_columns(num_rows, &cols, &fields))
}
pub fn _get_rows_encoded_ca(
name: PlSmallStr,
by: &[Column],
descending: &[bool],
nulls_last: &[bool],
) -> PolarsResult<BinaryOffsetChunked> {
_get_rows_encoded(by, descending, nulls_last)
.map(|rows| BinaryOffsetChunked::with_chunk(name, rows.into_array()))
}
pub fn _get_rows_encoded_arr(
by: &[Column],
descending: &[bool],
nulls_last: &[bool],
) -> PolarsResult<BinaryArray<i64>> {
_get_rows_encoded(by, descending, nulls_last).map(|rows| rows.into_array())
}
pub fn _get_rows_encoded_ca_unordered(
name: PlSmallStr,
by: &[Series],
) -> PolarsResult<BinaryOffsetChunked> {
_get_rows_encoded_unordered(by)
.map(|rows| BinaryOffsetChunked::with_chunk(name, rows.into_array()))
}