polars/docs/
lazy.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
//!
//! # Polars Lazy cookbook
//!
//! This page should serve as a cookbook to quickly get you started with Polars' query engine.
//! The lazy API allows you to create complex well performing queries on top of Polars eager.
//!
//! ## Tree Of Contents
//!
//! * [Start a lazy computation](#start-a-lazy-computation)
//! * [Filter](#filter)
//! * [Sort](#sort)
//! * [GroupBy](#group_by)
//! * [Joins](#joins)
//! * [Conditionally apply](#conditionally-apply)
//! * [Black box function](#black-box-function)
//!
//! ## Start a lazy computation
//!
//! ```
//! use polars::prelude::*;
//! use polars::df;
//!
//! # fn example() -> PolarsResult<()> {
//! let df = df![
//!     "a" => [1, 2, 3],
//!     "b" => [None, Some("a"), Some("b")]
//! ]?;
//! // from an eager DataFrame
//! let lf: LazyFrame = df.lazy();
//!
//! // scan a csv file lazily
//! let lf: LazyFrame = LazyCsvReader::new("some_path")
//!     .with_has_header(true)
//!     .finish()?;
//!
//! // scan a parquet file lazily
//! let lf: LazyFrame = LazyFrame::scan_parquet("some_path", Default::default())?;
//!
//! # Ok(())
//! # }
//! ```
//!
//! ## Filter
//! ```
//! use polars::prelude::*;
//! use polars::df;
//!
//! # fn example() -> PolarsResult<()> {
//! let df = df![
//!     "a" => [1, 2, 3],
//!     "b" => [None, Some("a"), Some("b")]
//! ]?;
//!
//! let filtered = df.lazy()
//!     .filter(col("a").gt(lit(2)))
//!     .collect()?;
//!
//! // filtered:
//!
//! // ╭─────┬─────╮
//! // │ a   ┆ b   │
//! // │ --- ┆ --- │
//! // │ i64 ┆ str │
//! // ╞═════╪═════╡
//! // │ 3   ┆ "c" │
//! // ╰─────┴─────╯
//!
//! # Ok(())
//! # }
//! ```
//!
//! ## Sort
//! ```
//! use polars::prelude::*;
//! use polars::df;
//!
//! # fn example() -> PolarsResult<()> {
//! let df = df![
//!     "a" => [1, 2, 3],
//!     "b" => ["a", "a", "b"]
//! ]?;
//! // sort this DataFrame by multiple columns
//!
//! let sorted = df.lazy()
//!     .sort_by_exprs(vec![col("b"), col("a")], SortMultipleOptions::default())
//!     .collect()?;
//!
//! // sorted:
//!
//! // ╭─────┬─────╮
//! // │ a   ┆ b   │
//! // │ --- ┆ --- │
//! // │ i64 ┆ str │
//! // ╞═════╪═════╡
//! // │ 1   ┆ "a" │
//! // │ 2   ┆ "a" │
//! // │ 3   ┆ "b" │
//! // ╰─────┴─────╯
//!
//! # Ok(())
//! # }
//! ```
//!
//! ## Groupby
//!
//! This example is from the polars [user guide](https://docs.pola.rs/user-guide/concepts/expressions-and-contexts/#group_by-and-aggregations).
//!
//! ```
//! use polars::prelude::*;
//! # fn example() -> PolarsResult<()> {
//!
//!  let df = LazyCsvReader::new("reddit.csv")
//!     .with_has_header(true)
//!     .with_separator(b',')
//!     .finish()?
//!     .group_by([col("comment_karma")])
//!     .agg([col("name").n_unique().alias("unique_names"), col("link_karma").max()])
//!     // take only 100 rows.
//!     .fetch(100)?;
//! # Ok(())
//! # }
//! ```
//!
//! ## Joins
//!
//! ```
//! use polars::prelude::*;
//! use polars::df;
//! # fn example() -> PolarsResult<()> {
//! let df_a = df![
//!     "a" => [1, 2, 1, 1],
//!     "b" => ["a", "b", "c", "c"],
//!     "c" => [0, 1, 2, 3]
//! ]?;
//!
//! let df_b = df![
//!     "foo" => [1, 1, 1],
//!     "bar" => ["a", "c", "c"],
//!     "ham" => ["let", "var", "const"]
//! ]?;
//!
//! let lf_a = df_a.clone().lazy();
//! let lf_b = df_b.clone().lazy();
//!
//! let joined = lf_a.join(lf_b, vec![col("a")], vec![col("foo")], JoinArgs::new(JoinType::Full)).collect()?;
//! // joined:
//!
//! // ╭─────┬─────┬─────┬──────┬─────────╮
//! // │ b   ┆ c   ┆ a   ┆ bar  ┆ ham     │
//! // │ --- ┆ --- ┆ --- ┆ ---  ┆ ---     │
//! // │ str ┆ i64 ┆ i64 ┆ str  ┆ str     │
//! // ╞═════╪═════╪═════╪══════╪═════════╡
//! // │ "a" ┆ 0   ┆ 1   ┆ "a"  ┆ "let"   │
//! // │ "a" ┆ 0   ┆ 1   ┆ "c"  ┆ "var"   │
//! // │ "a" ┆ 0   ┆ 1   ┆ "c"  ┆ "const" │
//! // │ "b" ┆ 1   ┆ 2   ┆ null ┆ null    │
//! // │ "c" ┆ 2   ┆ 1   ┆ null ┆ null    │
//! // │ "c" ┆ 3   ┆ 1   ┆ null ┆ null    │
//! // ╰─────┴─────┴─────┴──────┴─────────╯
//!
//! // other join syntax options
//! # let lf_a = df_a.clone().lazy();
//! # let lf_b = df_b.clone().lazy();
//! let inner = lf_a.inner_join(lf_b, col("a"), col("foo")).collect()?;
//!
//! # let lf_a = df_a.clone().lazy();
//! # let lf_b = df_b.clone().lazy();
//! let left = lf_a.left_join(lf_b, col("a"), col("foo")).collect()?;
//!
//! # let lf_a = df_a.clone().lazy();
//! # let lf_b = df_b.clone().lazy();
//! let outer = lf_a.full_join(lf_b, col("a"), col("foo")).collect()?;
//!
//! # let lf_a = df_a.clone().lazy();
//! # let lf_b = df_b.clone().lazy();
//! let joined_with_builder = lf_a.join_builder()
//!     .with(lf_b)
//!     .left_on(vec![col("a")])
//!     .right_on(vec![col("foo")])
//!     .how(JoinType::Inner)
//!     .force_parallel(true)
//!     .finish()
//!     .collect()?;
//!
//! # Ok(())
//! # }
//! ```
//!
//! ## Conditionally apply
//! If we want to create a new column based on some condition, we can use the [`when`]/[`then`]/[`otherwise`] expressions.
//!
//! * [`when`] - accepts a predicate expression
//! * [`then`] - expression to use when `predicate == true`
//! * [`otherwise`] - expression to use when `predicate == false`
//!
//! [`when`]: polars_lazy::dsl::Then::when
//! [`then`]: polars_lazy::dsl::When::then
//! [`otherwise`]: polars_lazy::dsl::Then::otherwise
//!
//! ```
//! use polars::prelude::*;
//! use polars::df;
//! # fn example() -> PolarsResult<()> {
//! let df = df![
//!     "range" => [1, 2, 3, 4, 5, 6, 8, 9, 10],
//!     "left" => (0..10).map(|_| Some("foo")).collect::<Vec<_>>(),
//!     "right" => (0..10).map(|_| Some("bar")).collect::<Vec<_>>()
//! ]?;
//!
//! let new = df.lazy()
//!     .with_column(when(col("range").gt_eq(lit(5)))
//!         .then(col("left"))
//!         .otherwise(col("right")).alias("foo_or_bar")
//!     ).collect()?;
//!
//! // new:
//!
//! // ╭───────┬───────┬───────┬────────────╮
//! // │ range ┆ left  ┆ right ┆ foo_or_bar │
//! // │ ---   ┆ ---   ┆ ---   ┆ ---        │
//! // │ i64   ┆ str   ┆ str   ┆ str        │
//! // ╞═══════╪═══════╪═══════╪════════════╡
//! // │ 0     ┆ "foo" ┆ "bar" ┆ "bar"      │
//! // │ 1     ┆ "foo" ┆ "bar" ┆ "bar"      │
//! // │ 2     ┆ "foo" ┆ "bar" ┆ "bar"      │
//! // │ 3     ┆ "foo" ┆ "bar" ┆ "bar"      │
//! // │ …     ┆ …     ┆ …     ┆ …          │
//! // │ 5     ┆ "foo" ┆ "bar" ┆ "foo"      │
//! // │ 6     ┆ "foo" ┆ "bar" ┆ "foo"      │
//! // │ 7     ┆ "foo" ┆ "bar" ┆ "foo"      │
//! // │ 8     ┆ "foo" ┆ "bar" ┆ "foo"      │
//! // │ 9     ┆ "foo" ┆ "bar" ┆ "foo"      │
//! // ╰───────┴───────┴───────┴────────────╯
//!
//! # Ok(())
//! # }
//! ```
//!
//! # Black box function
//!
//! The expression API should be expressive enough for most of what you want to achieve, but it can happen
//! that you need to pass the values to an external function you do not control. The snippet below
//! shows how we use the [`Struct`] datatype to be able to apply a function over multiple inputs.
//!
//! [`Struct`]: crate::datatypes::DataType::Struct
//!
//! ```ignore
//! use polars::prelude::*;
//! fn my_black_box_function(a: f32, b: f32) -> f32 {
//!     // do something
//!     a
//! }
//!
//! fn apply_multiples() -> PolarsResult<DataFrame> {
//!     df![
//!         "a" => [1.0f32, 2.0, 3.0],
//!         "b" => [3.0f32, 5.1, 0.3]
//!     ]?
//!     .lazy()
//!     .select([as_struct(vec![col("a"), col("b")]).map(
//!         |s| {
//!             let ca = s.struct_()?;
//!
//!             let series_a = ca.field_by_name("a")?;
//!             let series_b = ca.field_by_name("b")?;
//!             let chunked_a = series_a.f32()?;
//!             let chunked_b = series_b.f32()?;
//!
//!             let out: Float32Chunked = chunked_a
//!                 .into_iter()
//!                 .zip(chunked_b.into_iter())
//!                 .map(|(opt_a, opt_b)| match (opt_a, opt_b) {
//!                     (Some(a), Some(b)) => Some(my_black_box_function(a, b)),
//!                     _ => None,
//!                 })
//!                 .collect();
//!
//!             Ok(Some(out.into_series()))
//!         },
//!         GetOutput::from_type(DataType::Float32),
//!     )])
//!     .collect()
//! }
//!
//! ```
//!
//!