polars_core/series/implementations/
list.rs
1use super::*;
2use crate::chunked_array::comparison::*;
3#[cfg(feature = "algorithm_group_by")]
4use crate::frame::group_by::*;
5use crate::prelude::*;
6
7impl private::PrivateSeries for SeriesWrap<ListChunked> {
8 fn compute_len(&mut self) {
9 self.0.compute_len()
10 }
11 fn _field(&self) -> Cow<Field> {
12 Cow::Borrowed(self.0.ref_field())
13 }
14 fn _dtype(&self) -> &DataType {
15 self.0.ref_field().dtype()
16 }
17 fn _get_flags(&self) -> StatisticsFlags {
18 self.0.get_flags()
19 }
20 fn _set_flags(&mut self, flags: StatisticsFlags) {
21 self.0.set_flags(flags)
22 }
23
24 unsafe fn equal_element(&self, idx_self: usize, idx_other: usize, other: &Series) -> bool {
25 self.0.equal_element(idx_self, idx_other, other)
26 }
27
28 #[cfg(feature = "zip_with")]
29 fn zip_with_same_type(&self, mask: &BooleanChunked, other: &Series) -> PolarsResult<Series> {
30 ChunkZip::zip_with(&self.0, mask, other.as_ref().as_ref()).map(|ca| ca.into_series())
31 }
32
33 #[cfg(feature = "algorithm_group_by")]
34 unsafe fn agg_list(&self, groups: &GroupsType) -> Series {
35 self.0.agg_list(groups)
36 }
37
38 #[cfg(feature = "algorithm_group_by")]
39 fn group_tuples(&self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsType> {
40 IntoGroupsType::group_tuples(&self.0, multithreaded, sorted)
41 }
42
43 fn into_total_eq_inner<'a>(&'a self) -> Box<dyn TotalEqInner + 'a> {
44 (&self.0).into_total_eq_inner()
45 }
46 fn into_total_ord_inner<'a>(&'a self) -> Box<dyn TotalOrdInner + 'a> {
47 invalid_operation_panic!(into_total_ord_inner, self)
48 }
49
50 fn add_to(&self, rhs: &Series) -> PolarsResult<Series> {
51 self.0.add_to(rhs)
52 }
53
54 fn subtract(&self, rhs: &Series) -> PolarsResult<Series> {
55 self.0.subtract(rhs)
56 }
57
58 fn multiply(&self, rhs: &Series) -> PolarsResult<Series> {
59 self.0.multiply(rhs)
60 }
61 fn divide(&self, rhs: &Series) -> PolarsResult<Series> {
62 self.0.divide(rhs)
63 }
64 fn remainder(&self, rhs: &Series) -> PolarsResult<Series> {
65 self.0.remainder(rhs)
66 }
67}
68
69impl SeriesTrait for SeriesWrap<ListChunked> {
70 fn rename(&mut self, name: PlSmallStr) {
71 self.0.rename(name);
72 }
73
74 fn chunk_lengths(&self) -> ChunkLenIter {
75 self.0.chunk_lengths()
76 }
77 fn name(&self) -> &PlSmallStr {
78 self.0.name()
79 }
80
81 fn chunks(&self) -> &Vec<ArrayRef> {
82 self.0.chunks()
83 }
84 unsafe fn chunks_mut(&mut self) -> &mut Vec<ArrayRef> {
85 self.0.chunks_mut()
86 }
87 fn shrink_to_fit(&mut self) {
88 self.0.shrink_to_fit()
89 }
90
91 fn sum_reduce(&self) -> PolarsResult<Scalar> {
92 polars_bail!(
93 op = "`sum`",
94 self.dtype(),
95 hint = "you may mean to call `concat_list`"
96 );
97 }
98
99 fn arg_sort(&self, options: SortOptions) -> IdxCa {
100 self.0.arg_sort(options)
101 }
102
103 fn sort_with(&self, options: SortOptions) -> PolarsResult<Series> {
104 Ok(self.0.sort_with(options).into_series())
105 }
106
107 fn slice(&self, offset: i64, length: usize) -> Series {
108 self.0.slice(offset, length).into_series()
109 }
110
111 fn split_at(&self, offset: i64) -> (Series, Series) {
112 let (a, b) = self.0.split_at(offset);
113 (a.into_series(), b.into_series())
114 }
115
116 fn append(&mut self, other: &Series) -> PolarsResult<()> {
117 polars_ensure!(self.0.dtype() == other.dtype(), append);
118 self.0.append(other.as_ref().as_ref())
119 }
120 fn append_owned(&mut self, other: Series) -> PolarsResult<()> {
121 polars_ensure!(self.0.dtype() == other.dtype(), append);
122 self.0.append_owned(other.take_inner())
123 }
124
125 fn extend(&mut self, other: &Series) -> PolarsResult<()> {
126 polars_ensure!(self.0.dtype() == other.dtype(), extend);
127 self.0.extend(other.as_ref().as_ref())
128 }
129
130 fn filter(&self, filter: &BooleanChunked) -> PolarsResult<Series> {
131 ChunkFilter::filter(&self.0, filter).map(|ca| ca.into_series())
132 }
133
134 fn take(&self, indices: &IdxCa) -> PolarsResult<Series> {
135 Ok(self.0.take(indices)?.into_series())
136 }
137
138 unsafe fn take_unchecked(&self, indices: &IdxCa) -> Series {
139 self.0.take_unchecked(indices).into_series()
140 }
141
142 fn take_slice(&self, indices: &[IdxSize]) -> PolarsResult<Series> {
143 Ok(self.0.take(indices)?.into_series())
144 }
145
146 unsafe fn take_slice_unchecked(&self, indices: &[IdxSize]) -> Series {
147 self.0.take_unchecked(indices).into_series()
148 }
149
150 fn len(&self) -> usize {
151 self.0.len()
152 }
153
154 fn rechunk(&self) -> Series {
155 self.0.rechunk().into_owned().into_series()
156 }
157
158 fn new_from_index(&self, index: usize, length: usize) -> Series {
159 ChunkExpandAtIndex::new_from_index(&self.0, index, length).into_series()
160 }
161
162 fn cast(&self, dtype: &DataType, cast_options: CastOptions) -> PolarsResult<Series> {
163 self.0.cast_with_options(dtype, cast_options)
164 }
165
166 #[inline]
167 unsafe fn get_unchecked(&self, index: usize) -> AnyValue {
168 self.0.get_any_value_unchecked(index)
169 }
170
171 fn null_count(&self) -> usize {
172 self.0.null_count()
173 }
174
175 fn has_nulls(&self) -> bool {
176 self.0.has_nulls()
177 }
178
179 #[cfg(feature = "algorithm_group_by")]
180 fn unique(&self) -> PolarsResult<Series> {
181 if !self.inner_dtype().is_primitive_numeric() {
182 polars_bail!(opq = unique, self.dtype());
183 }
184 if self.len() < 2 {
186 return Ok(self.0.clone().into_series());
187 }
188 let main_thread = POOL.current_thread_index().is_none();
189 let groups = self.group_tuples(main_thread, false);
190 Ok(unsafe { self.0.clone().into_series().agg_first(&groups?) })
193 }
194
195 #[cfg(feature = "algorithm_group_by")]
196 fn n_unique(&self) -> PolarsResult<usize> {
197 match self.len() {
199 0 => Ok(0),
200 1 => Ok(1),
201 _ => {
202 let main_thread = POOL.current_thread_index().is_none();
203 let groups = self.group_tuples(main_thread, false)?;
204 Ok(groups.len())
205 },
206 }
207 }
208
209 #[cfg(feature = "algorithm_group_by")]
210 fn arg_unique(&self) -> PolarsResult<IdxCa> {
211 if !self.inner_dtype().is_primitive_numeric() {
212 polars_bail!(opq = arg_unique, self.dtype());
213 }
214 if self.len() == 1 {
216 return Ok(IdxCa::new_vec(self.name().clone(), vec![0 as IdxSize]));
217 }
218 let main_thread = POOL.current_thread_index().is_none();
219 let groups = self.group_tuples(main_thread, true)?;
221 let first = groups.take_group_firsts();
222 Ok(IdxCa::from_vec(self.name().clone(), first))
223 }
224
225 fn is_null(&self) -> BooleanChunked {
226 self.0.is_null()
227 }
228
229 fn is_not_null(&self) -> BooleanChunked {
230 self.0.is_not_null()
231 }
232
233 fn reverse(&self) -> Series {
234 ChunkReverse::reverse(&self.0).into_series()
235 }
236
237 fn as_single_ptr(&mut self) -> PolarsResult<usize> {
238 self.0.as_single_ptr()
239 }
240
241 fn shift(&self, periods: i64) -> Series {
242 ChunkShift::shift(&self.0, periods).into_series()
243 }
244
245 fn clone_inner(&self) -> Arc<dyn SeriesTrait> {
246 Arc::new(SeriesWrap(Clone::clone(&self.0)))
247 }
248
249 fn as_any(&self) -> &dyn Any {
250 &self.0
251 }
252
253 fn as_any_mut(&mut self) -> &mut dyn Any {
254 &mut self.0
255 }
256
257 fn as_phys_any(&self) -> &dyn Any {
258 &self.0
259 }
260
261 fn as_arc_any(self: Arc<Self>) -> Arc<dyn Any + Send + Sync> {
262 self as _
263 }
264}