polars_io/csv/read/
reader.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
use std::fs::File;
use std::path::PathBuf;

use polars_core::prelude::*;

use super::options::CsvReadOptions;
use super::read_impl::batched::to_batched_owned;
use super::read_impl::CoreReader;
use super::{BatchedCsvReader, OwnedBatchedCsvReader};
use crate::mmap::MmapBytesReader;
use crate::path_utils::resolve_homedir;
use crate::predicates::PhysicalIoExpr;
use crate::shared::SerReader;
use crate::utils::get_reader_bytes;

/// Create a new DataFrame by reading a csv file.
///
/// # Example
///
/// ```
/// use polars_core::prelude::*;
/// use polars_io::prelude::*;
/// use std::fs::File;
///
/// fn example() -> PolarsResult<DataFrame> {
///     CsvReadOptions::default()
///             .with_has_header(true)
///             .try_into_reader_with_file_path(Some("iris.csv".into()))?
///             .finish()
/// }
/// ```
#[must_use]
pub struct CsvReader<R>
where
    R: MmapBytesReader,
{
    /// File or Stream object.
    reader: R,
    /// Options for the CSV reader.
    options: CsvReadOptions,
    predicate: Option<Arc<dyn PhysicalIoExpr>>,
}

impl<R> CsvReader<R>
where
    R: MmapBytesReader,
{
    pub fn _with_predicate(mut self, predicate: Option<Arc<dyn PhysicalIoExpr>>) -> Self {
        self.predicate = predicate;
        self
    }

    // TODO: Investigate if we can remove this
    pub(crate) fn with_schema(mut self, schema: SchemaRef) -> Self {
        self.options.schema = Some(schema);
        self
    }
}

impl CsvReadOptions {
    /// Creates a CSV reader using a file path.
    ///
    /// # Panics
    /// If both self.path and the path parameter are non-null. Only one of them is
    /// to be non-null.
    pub fn try_into_reader_with_file_path(
        mut self,
        path: Option<PathBuf>,
    ) -> PolarsResult<CsvReader<File>> {
        if self.path.is_some() {
            assert!(
                path.is_none(),
                "impl error: only 1 of self.path or the path parameter is to be non-null"
            );
        } else {
            self.path = path;
        };

        assert!(
            self.path.is_some(),
            "impl error: either one of self.path or the path parameter is to be non-null"
        );

        let path = resolve_homedir(self.path.as_ref().unwrap());
        let reader = polars_utils::open_file(&path)?;
        let options = self;

        Ok(CsvReader {
            reader,
            options,
            predicate: None,
        })
    }

    /// Creates a CSV reader using a file handle.
    pub fn into_reader_with_file_handle<R: MmapBytesReader>(self, reader: R) -> CsvReader<R> {
        let options = self;

        CsvReader {
            reader,
            options,
            predicate: Default::default(),
        }
    }
}

impl<R: MmapBytesReader> CsvReader<R> {
    fn core_reader(&mut self) -> PolarsResult<CoreReader> {
        let reader_bytes = get_reader_bytes(&mut self.reader)?;

        let parse_options = self.options.get_parse_options();

        CoreReader::new(
            reader_bytes,
            parse_options,
            self.options.n_rows,
            self.options.skip_rows,
            self.options.skip_lines,
            self.options.projection.clone().map(|x| x.as_ref().clone()),
            self.options.infer_schema_length,
            self.options.has_header,
            self.options.ignore_errors,
            self.options.schema.clone(),
            self.options.columns.clone(),
            self.options.n_threads,
            self.options.schema_overwrite.clone(),
            self.options.dtype_overwrite.clone(),
            self.options.chunk_size,
            self.predicate.clone(),
            self.options.fields_to_cast.clone(),
            self.options.skip_rows_after_header,
            self.options.row_index.clone(),
            self.options.raise_if_empty,
        )
    }

    pub fn batched_borrowed(&mut self) -> PolarsResult<BatchedCsvReader> {
        let csv_reader = self.core_reader()?;
        csv_reader.batched()
    }
}

impl CsvReader<Box<dyn MmapBytesReader>> {
    pub fn batched(mut self, schema: Option<SchemaRef>) -> PolarsResult<OwnedBatchedCsvReader> {
        if let Some(schema) = schema {
            self = self.with_schema(schema);
        }

        to_batched_owned(self)
    }
}

impl<R> SerReader<R> for CsvReader<R>
where
    R: MmapBytesReader,
{
    /// Create a new CsvReader from a file/stream using default read options. To
    /// use non-default read options, first construct [CsvReadOptions] and then use
    /// any of the `(try)_into_` methods.
    fn new(reader: R) -> Self {
        CsvReader {
            reader,
            options: Default::default(),
            predicate: None,
        }
    }

    /// Read the file and create the DataFrame.
    fn finish(mut self) -> PolarsResult<DataFrame> {
        let rechunk = self.options.rechunk;
        let low_memory = self.options.low_memory;

        let csv_reader = self.core_reader()?;
        let mut df = csv_reader.finish()?;

        // Important that this rechunk is never done in parallel.
        // As that leads to great memory overhead.
        if rechunk && df.first_col_n_chunks() > 1 {
            if low_memory {
                df.as_single_chunk();
            } else {
                df.as_single_chunk_par();
            }
        }

        Ok(df)
    }
}

/// Splits datatypes that cannot be natively read into a `fields_to_cast` for
/// post-read casting.
///
/// # Returns
/// `has_categorical`
pub fn prepare_csv_schema(
    schema: &mut SchemaRef,
    fields_to_cast: &mut Vec<Field>,
) -> PolarsResult<bool> {
    // This branch we check if there are dtypes we cannot parse.
    // We only support a few dtypes in the parser and later cast to the required dtype
    let mut _has_categorical = false;

    let mut changed = false;

    let new_schema = schema
        .iter_fields()
        .map(|mut fld| {
            use DataType::*;

            let mut matched = true;

            let out = match fld.dtype() {
                Time => {
                    fields_to_cast.push(fld.clone());
                    fld.coerce(String);
                    PolarsResult::Ok(fld)
                },
                #[cfg(feature = "dtype-categorical")]
                Categorical(_, _) => {
                    _has_categorical = true;
                    PolarsResult::Ok(fld)
                },
                #[cfg(feature = "dtype-decimal")]
                Decimal(precision, scale) => match (precision, scale) {
                    (_, Some(_)) => {
                        fields_to_cast.push(fld.clone());
                        fld.coerce(String);
                        PolarsResult::Ok(fld)
                    },
                    _ => Err(PolarsError::ComputeError(
                        "'scale' must be set when reading csv column as Decimal".into(),
                    )),
                },
                _ => {
                    matched = false;
                    PolarsResult::Ok(fld)
                },
            }?;

            changed |= matched;

            PolarsResult::Ok(out)
        })
        .collect::<PolarsResult<Schema>>()?;

    if changed {
        *schema = Arc::new(new_schema);
    }

    Ok(_has_categorical)
}