polars_core/series/implementations/
categorical.rsuse super::*;
use crate::chunked_array::comparison::*;
use crate::prelude::*;
unsafe impl IntoSeries for CategoricalChunked {
fn into_series(self) -> Series {
Series(Arc::new(SeriesWrap(self)))
}
}
impl SeriesWrap<CategoricalChunked> {
fn finish_with_state(&self, keep_fast_unique: bool, cats: UInt32Chunked) -> CategoricalChunked {
let mut out = unsafe {
CategoricalChunked::from_cats_and_rev_map_unchecked(
cats,
self.0.get_rev_map().clone(),
self.0.is_enum(),
self.0.get_ordering(),
)
};
if keep_fast_unique && self.0._can_fast_unique() {
out.set_fast_unique(true)
}
out
}
fn with_state<F>(&self, keep_fast_unique: bool, apply: F) -> CategoricalChunked
where
F: Fn(&UInt32Chunked) -> UInt32Chunked,
{
let cats = apply(self.0.physical());
self.finish_with_state(keep_fast_unique, cats)
}
fn try_with_state<'a, F>(
&'a self,
keep_fast_unique: bool,
apply: F,
) -> PolarsResult<CategoricalChunked>
where
F: for<'b> Fn(&'a UInt32Chunked) -> PolarsResult<UInt32Chunked>,
{
let cats = apply(self.0.physical())?;
Ok(self.finish_with_state(keep_fast_unique, cats))
}
}
impl private::PrivateSeries for SeriesWrap<CategoricalChunked> {
fn compute_len(&mut self) {
self.0.physical_mut().compute_len()
}
fn _field(&self) -> Cow<Field> {
Cow::Owned(self.0.field())
}
fn _dtype(&self) -> &DataType {
self.0.dtype()
}
fn _get_flags(&self) -> StatisticsFlags {
self.0.get_flags()
}
fn _set_flags(&mut self, flags: StatisticsFlags) {
self.0.set_flags(flags)
}
unsafe fn equal_element(&self, idx_self: usize, idx_other: usize, other: &Series) -> bool {
self.0.physical().equal_element(idx_self, idx_other, other)
}
#[cfg(feature = "zip_with")]
fn zip_with_same_type(&self, mask: &BooleanChunked, other: &Series) -> PolarsResult<Series> {
self.0
.zip_with(mask, other.categorical()?)
.map(|ca| ca.into_series())
}
fn into_total_ord_inner<'a>(&'a self) -> Box<dyn TotalOrdInner + 'a> {
if self.0.uses_lexical_ordering() {
(&self.0).into_total_ord_inner()
} else {
self.0.physical().into_total_ord_inner()
}
}
fn into_total_eq_inner<'a>(&'a self) -> Box<dyn TotalEqInner + 'a> {
invalid_operation_panic!(into_total_eq_inner, self)
}
fn vec_hash(&self, random_state: PlRandomState, buf: &mut Vec<u64>) -> PolarsResult<()> {
self.0.physical().vec_hash(random_state, buf)?;
Ok(())
}
fn vec_hash_combine(
&self,
build_hasher: PlRandomState,
hashes: &mut [u64],
) -> PolarsResult<()> {
self.0.physical().vec_hash_combine(build_hasher, hashes)?;
Ok(())
}
#[cfg(feature = "algorithm_group_by")]
unsafe fn agg_list(&self, groups: &GroupsProxy) -> Series {
let list = self.0.physical().agg_list(groups);
let mut list = list.list().unwrap().clone();
unsafe { list.to_logical(self.dtype().clone()) };
list.into_series()
}
#[cfg(feature = "algorithm_group_by")]
fn group_tuples(&self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsProxy> {
#[cfg(feature = "performant")]
{
Ok(self.0.group_tuples_perfect(multithreaded, sorted))
}
#[cfg(not(feature = "performant"))]
{
self.0.physical().group_tuples(multithreaded, sorted)
}
}
fn arg_sort_multiple(
&self,
by: &[Column],
options: &SortMultipleOptions,
) -> PolarsResult<IdxCa> {
self.0.arg_sort_multiple(by, options)
}
}
impl SeriesTrait for SeriesWrap<CategoricalChunked> {
fn rename(&mut self, name: PlSmallStr) {
self.0.physical_mut().rename(name);
}
fn chunk_lengths(&self) -> ChunkLenIter {
self.0.physical().chunk_lengths()
}
fn name(&self) -> &PlSmallStr {
self.0.physical().name()
}
fn chunks(&self) -> &Vec<ArrayRef> {
self.0.physical().chunks()
}
unsafe fn chunks_mut(&mut self) -> &mut Vec<ArrayRef> {
self.0.physical_mut().chunks_mut()
}
fn shrink_to_fit(&mut self) {
self.0.physical_mut().shrink_to_fit()
}
fn slice(&self, offset: i64, length: usize) -> Series {
self.with_state(false, |cats| cats.slice(offset, length))
.into_series()
}
fn split_at(&self, offset: i64) -> (Series, Series) {
let (a, b) = self.0.physical().split_at(offset);
let a = self.finish_with_state(false, a).into_series();
let b = self.finish_with_state(false, b).into_series();
(a, b)
}
fn append(&mut self, other: &Series) -> PolarsResult<()> {
polars_ensure!(self.0.dtype() == other.dtype(), append);
self.0.append(other.categorical().unwrap())
}
fn extend(&mut self, other: &Series) -> PolarsResult<()> {
polars_ensure!(self.0.dtype() == other.dtype(), extend);
let other_ca = other.categorical().unwrap();
let rev_map_self = self.0.get_rev_map();
let rev_map_other = other_ca.get_rev_map();
match (&**rev_map_self, &**rev_map_other) {
(RevMapping::Global(_, _, idl), RevMapping::Global(_, _, idr)) if idl == idr => {
let mut rev_map_merger = GlobalRevMapMerger::new(rev_map_self.clone());
rev_map_merger.merge_map(rev_map_other)?;
self.0.physical_mut().extend(other_ca.physical())?;
unsafe { self.0.set_rev_map(rev_map_merger.finish(), false) };
Ok(())
},
_ => self.0.append(other_ca),
}
}
fn filter(&self, filter: &BooleanChunked) -> PolarsResult<Series> {
self.try_with_state(false, |cats| cats.filter(filter))
.map(|ca| ca.into_series())
}
fn take(&self, indices: &IdxCa) -> PolarsResult<Series> {
self.try_with_state(false, |cats| cats.take(indices))
.map(|ca| ca.into_series())
}
unsafe fn take_unchecked(&self, indices: &IdxCa) -> Series {
self.with_state(false, |cats| cats.take_unchecked(indices))
.into_series()
}
fn take_slice(&self, indices: &[IdxSize]) -> PolarsResult<Series> {
self.try_with_state(false, |cats| cats.take(indices))
.map(|ca| ca.into_series())
}
unsafe fn take_slice_unchecked(&self, indices: &[IdxSize]) -> Series {
self.with_state(false, |cats| cats.take_unchecked(indices))
.into_series()
}
fn len(&self) -> usize {
self.0.len()
}
fn rechunk(&self) -> Series {
self.with_state(true, |ca| ca.rechunk()).into_series()
}
fn new_from_index(&self, index: usize, length: usize) -> Series {
self.with_state(false, |cats| cats.new_from_index(index, length))
.into_series()
}
fn cast(&self, dtype: &DataType, options: CastOptions) -> PolarsResult<Series> {
self.0.cast_with_options(dtype, options)
}
#[inline]
unsafe fn get_unchecked(&self, index: usize) -> AnyValue {
self.0.get_any_value_unchecked(index)
}
fn sort_with(&self, options: SortOptions) -> PolarsResult<Series> {
Ok(self.0.sort_with(options).into_series())
}
fn arg_sort(&self, options: SortOptions) -> IdxCa {
self.0.arg_sort(options)
}
fn null_count(&self) -> usize {
self.0.physical().null_count()
}
fn has_nulls(&self) -> bool {
self.0.physical().has_nulls()
}
#[cfg(feature = "algorithm_group_by")]
fn unique(&self) -> PolarsResult<Series> {
self.0.unique().map(|ca| ca.into_series())
}
#[cfg(feature = "algorithm_group_by")]
fn n_unique(&self) -> PolarsResult<usize> {
self.0.n_unique()
}
#[cfg(feature = "algorithm_group_by")]
fn arg_unique(&self) -> PolarsResult<IdxCa> {
self.0.physical().arg_unique()
}
fn is_null(&self) -> BooleanChunked {
self.0.physical().is_null()
}
fn is_not_null(&self) -> BooleanChunked {
self.0.physical().is_not_null()
}
fn reverse(&self) -> Series {
self.with_state(true, |cats| cats.reverse()).into_series()
}
fn as_single_ptr(&mut self) -> PolarsResult<usize> {
self.0.physical_mut().as_single_ptr()
}
fn shift(&self, periods: i64) -> Series {
self.with_state(false, |ca| ca.shift(periods)).into_series()
}
fn clone_inner(&self) -> Arc<dyn SeriesTrait> {
Arc::new(SeriesWrap(Clone::clone(&self.0)))
}
fn min_reduce(&self) -> PolarsResult<Scalar> {
Ok(ChunkAggSeries::min_reduce(&self.0))
}
fn max_reduce(&self) -> PolarsResult<Scalar> {
Ok(ChunkAggSeries::max_reduce(&self.0))
}
fn as_any(&self) -> &dyn Any {
&self.0
}
}
impl private::PrivateSeriesNumeric for SeriesWrap<CategoricalChunked> {
fn bit_repr(&self) -> Option<BitRepr> {
Some(BitRepr::Small(self.0.physical().clone()))
}
}