polars_io/predicates.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
use polars_core::prelude::*;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
pub trait PhysicalIoExpr: Send + Sync {
/// Take a [`DataFrame`] and produces a boolean [`Series`] that serves
/// as a predicate mask
fn evaluate_io(&self, df: &DataFrame) -> PolarsResult<Series>;
/// Get the variables that are used in the expression i.e. live variables.
/// This can contain duplicates.
fn collect_live_columns(&self, live_columns: &mut PlIndexSet<PlSmallStr>);
/// Can take &dyn Statistics and determine of a file should be
/// read -> `true`
/// or not -> `false`
fn as_stats_evaluator(&self) -> Option<&dyn StatsEvaluator> {
None
}
}
pub trait StatsEvaluator {
fn should_read(&self, stats: &BatchStats) -> PolarsResult<bool>;
}
#[cfg(any(feature = "parquet", feature = "ipc"))]
pub fn apply_predicate(
df: &mut DataFrame,
predicate: Option<&dyn PhysicalIoExpr>,
parallel: bool,
) -> PolarsResult<()> {
if let (Some(predicate), false) = (&predicate, df.get_columns().is_empty()) {
let s = predicate.evaluate_io(df)?;
let mask = s.bool().expect("filter predicates was not of type boolean");
if parallel {
*df = df.filter(mask)?;
} else {
*df = df._filter_seq(mask)?;
}
}
Ok(())
}
/// Statistics of the values in a column.
///
/// The following statistics are tracked for each row group:
/// - Null count
/// - Minimum value
/// - Maximum value
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct ColumnStats {
field: Field,
// Each Series contains the stats for each row group.
null_count: Option<Series>,
min_value: Option<Series>,
max_value: Option<Series>,
}
impl ColumnStats {
/// Constructs a new [`ColumnStats`].
pub fn new(
field: Field,
null_count: Option<Series>,
min_value: Option<Series>,
max_value: Option<Series>,
) -> Self {
Self {
field,
null_count,
min_value,
max_value,
}
}
/// Constructs a new [`ColumnStats`] with only the [`Field`] information and no statistics.
pub fn from_field(field: Field) -> Self {
Self {
field,
null_count: None,
min_value: None,
max_value: None,
}
}
/// Constructs a new [`ColumnStats`] from a single-value Series.
pub fn from_column_literal(s: Series) -> Self {
debug_assert_eq!(s.len(), 1);
Self {
field: s.field().into_owned(),
null_count: None,
min_value: Some(s.clone()),
max_value: Some(s),
}
}
pub fn field_name(&self) -> &PlSmallStr {
self.field.name()
}
/// Returns the [`DataType`] of the column.
pub fn dtype(&self) -> &DataType {
self.field.dtype()
}
/// Returns the null count of each row group of the column.
pub fn get_null_count_state(&self) -> Option<&Series> {
self.null_count.as_ref()
}
/// Returns the minimum value of each row group of the column.
pub fn get_min_state(&self) -> Option<&Series> {
self.min_value.as_ref()
}
/// Returns the maximum value of each row group of the column.
pub fn get_max_state(&self) -> Option<&Series> {
self.max_value.as_ref()
}
/// Returns the null count of the column.
pub fn null_count(&self) -> Option<usize> {
match self.dtype() {
#[cfg(feature = "dtype-struct")]
DataType::Struct(_) => None,
_ => {
let s = self.get_null_count_state()?;
// if all null, there are no statistics.
if s.null_count() != s.len() {
s.sum().ok()
} else {
None
}
},
}
}
/// Returns the minimum and maximum values of the column as a single [`Series`].
pub fn to_min_max(&self) -> Option<Series> {
let min_val = self.get_min_state()?;
let max_val = self.get_max_state()?;
let dtype = self.dtype();
if !use_min_max(dtype) {
return None;
}
let mut min_max_values = min_val.clone();
min_max_values.append(max_val).unwrap();
if min_max_values.null_count() > 0 {
None
} else {
Some(min_max_values)
}
}
/// Returns the minimum value of the column as a single-value [`Series`].
///
/// Returns `None` if no maximum value is available.
pub fn to_min(&self) -> Option<&Series> {
// @scalar-opt
let min_val = self.min_value.as_ref()?;
let dtype = min_val.dtype();
if !use_min_max(dtype) || min_val.len() != 1 {
return None;
}
if min_val.null_count() > 0 {
None
} else {
Some(min_val)
}
}
/// Returns the maximum value of the column as a single-value [`Series`].
///
/// Returns `None` if no maximum value is available.
pub fn to_max(&self) -> Option<&Series> {
// @scalar-opt
let max_val = self.max_value.as_ref()?;
let dtype = max_val.dtype();
if !use_min_max(dtype) || max_val.len() != 1 {
return None;
}
if max_val.null_count() > 0 {
None
} else {
Some(max_val)
}
}
}
/// Returns whether the [`DataType`] supports minimum/maximum operations.
fn use_min_max(dtype: &DataType) -> bool {
dtype.is_primitive_numeric()
|| dtype.is_temporal()
|| matches!(
dtype,
DataType::String | DataType::Binary | DataType::Boolean
)
}
/// A collection of column stats with a known schema.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone)]
pub struct BatchStats {
schema: SchemaRef,
stats: Vec<ColumnStats>,
// This might not be available, as when pruning hive partitions.
num_rows: Option<usize>,
}
impl Default for BatchStats {
fn default() -> Self {
Self {
schema: Arc::new(Schema::default()),
stats: Vec::new(),
num_rows: None,
}
}
}
impl BatchStats {
/// Constructs a new [`BatchStats`].
///
/// The `stats` should match the order of the `schema`.
pub fn new(schema: SchemaRef, stats: Vec<ColumnStats>, num_rows: Option<usize>) -> Self {
Self {
schema,
stats,
num_rows,
}
}
/// Returns the [`Schema`] of the batch.
pub fn schema(&self) -> &SchemaRef {
&self.schema
}
/// Returns the [`ColumnStats`] of all columns in the batch, if known.
pub fn column_stats(&self) -> &[ColumnStats] {
self.stats.as_ref()
}
/// Returns the [`ColumnStats`] of a single column in the batch.
///
/// Returns an `Err` if no statistics are available for the given column.
pub fn get_stats(&self, column: &str) -> PolarsResult<&ColumnStats> {
self.schema.try_index_of(column).map(|i| &self.stats[i])
}
/// Returns the number of rows in the batch.
///
/// Returns `None` if the number of rows is unknown.
pub fn num_rows(&self) -> Option<usize> {
self.num_rows
}
pub fn with_schema(&mut self, schema: SchemaRef) {
self.schema = schema;
}
pub fn take_indices(&mut self, indices: &[usize]) {
self.stats = indices.iter().map(|&i| self.stats[i].clone()).collect();
}
}