polars_io/
predicates.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
use polars_core::prelude::*;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

pub trait PhysicalIoExpr: Send + Sync {
    /// Take a [`DataFrame`] and produces a boolean [`Series`] that serves
    /// as a predicate mask
    fn evaluate_io(&self, df: &DataFrame) -> PolarsResult<Series>;

    /// Get the variables that are used in the expression i.e. live variables.
    /// This can contain duplicates.
    fn live_variables(&self) -> Option<Vec<PlSmallStr>>;

    /// Can take &dyn Statistics and determine of a file should be
    /// read -> `true`
    /// or not -> `false`
    fn as_stats_evaluator(&self) -> Option<&dyn StatsEvaluator> {
        None
    }
}

pub trait StatsEvaluator {
    fn should_read(&self, stats: &BatchStats) -> PolarsResult<bool>;
}

#[cfg(any(feature = "parquet", feature = "ipc"))]
pub fn apply_predicate(
    df: &mut DataFrame,
    predicate: Option<&dyn PhysicalIoExpr>,
    parallel: bool,
) -> PolarsResult<()> {
    if let (Some(predicate), false) = (&predicate, df.get_columns().is_empty()) {
        let s = predicate.evaluate_io(df)?;
        let mask = s.bool().expect("filter predicates was not of type boolean");

        if parallel {
            *df = df.filter(mask)?;
        } else {
            *df = df._filter_seq(mask)?;
        }
    }
    Ok(())
}

/// Statistics of the values in a column.
///
/// The following statistics are tracked for each row group:
/// - Null count
/// - Minimum value
/// - Maximum value
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct ColumnStats {
    field: Field,
    // Each Series contains the stats for each row group.
    null_count: Option<Series>,
    min_value: Option<Series>,
    max_value: Option<Series>,
}

impl ColumnStats {
    /// Constructs a new [`ColumnStats`].
    pub fn new(
        field: Field,
        null_count: Option<Series>,
        min_value: Option<Series>,
        max_value: Option<Series>,
    ) -> Self {
        Self {
            field,
            null_count,
            min_value,
            max_value,
        }
    }

    /// Constructs a new [`ColumnStats`] with only the [`Field`] information and no statistics.
    pub fn from_field(field: Field) -> Self {
        Self {
            field,
            null_count: None,
            min_value: None,
            max_value: None,
        }
    }

    /// Constructs a new [`ColumnStats`] from a single-value Series.
    pub fn from_column_literal(s: Series) -> Self {
        debug_assert_eq!(s.len(), 1);
        Self {
            field: s.field().into_owned(),
            null_count: None,
            min_value: Some(s.clone()),
            max_value: Some(s),
        }
    }

    pub fn field_name(&self) -> &PlSmallStr {
        self.field.name()
    }

    /// Returns the [`DataType`] of the column.
    pub fn dtype(&self) -> &DataType {
        self.field.dtype()
    }

    /// Returns the null count of each row group of the column.
    pub fn get_null_count_state(&self) -> Option<&Series> {
        self.null_count.as_ref()
    }

    /// Returns the minimum value of each row group of the column.
    pub fn get_min_state(&self) -> Option<&Series> {
        self.min_value.as_ref()
    }

    /// Returns the maximum value of each row group of the column.
    pub fn get_max_state(&self) -> Option<&Series> {
        self.max_value.as_ref()
    }

    /// Returns the null count of the column.
    pub fn null_count(&self) -> Option<usize> {
        match self.dtype() {
            #[cfg(feature = "dtype-struct")]
            DataType::Struct(_) => None,
            _ => {
                let s = self.get_null_count_state()?;
                // if all null, there are no statistics.
                if s.null_count() != s.len() {
                    s.sum().ok()
                } else {
                    None
                }
            },
        }
    }

    /// Returns the minimum and maximum values of the column as a single [`Series`].
    pub fn to_min_max(&self) -> Option<Series> {
        let min_val = self.get_min_state()?;
        let max_val = self.get_max_state()?;
        let dtype = self.dtype();

        if !use_min_max(dtype) {
            return None;
        }

        let mut min_max_values = min_val.clone();
        min_max_values.append(max_val).unwrap();
        if min_max_values.null_count() > 0 {
            None
        } else {
            Some(min_max_values)
        }
    }

    /// Returns the minimum value of the column as a single-value [`Series`].
    ///
    /// Returns `None` if no maximum value is available.
    pub fn to_min(&self) -> Option<&Series> {
        // @scalar-opt
        let min_val = self.min_value.as_ref()?;
        let dtype = min_val.dtype();

        if !use_min_max(dtype) || min_val.len() != 1 {
            return None;
        }

        if min_val.null_count() > 0 {
            None
        } else {
            Some(min_val)
        }
    }

    /// Returns the maximum value of the column as a single-value [`Series`].
    ///
    /// Returns `None` if no maximum value is available.
    pub fn to_max(&self) -> Option<&Series> {
        // @scalar-opt
        let max_val = self.max_value.as_ref()?;
        let dtype = max_val.dtype();

        if !use_min_max(dtype) || max_val.len() != 1 {
            return None;
        }

        if max_val.null_count() > 0 {
            None
        } else {
            Some(max_val)
        }
    }
}

/// Returns whether the [`DataType`] supports minimum/maximum operations.
fn use_min_max(dtype: &DataType) -> bool {
    dtype.is_numeric()
        || dtype.is_temporal()
        || matches!(
            dtype,
            DataType::String | DataType::Binary | DataType::Boolean
        )
}

/// A collection of column stats with a known schema.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone)]
pub struct BatchStats {
    schema: SchemaRef,
    stats: Vec<ColumnStats>,
    // This might not be available, as when pruning hive partitions.
    num_rows: Option<usize>,
}

impl BatchStats {
    /// Constructs a new [`BatchStats`].
    ///
    /// The `stats` should match the order of the `schema`.
    pub fn new(schema: SchemaRef, stats: Vec<ColumnStats>, num_rows: Option<usize>) -> Self {
        Self {
            schema,
            stats,
            num_rows,
        }
    }

    /// Returns the [`Schema`] of the batch.
    pub fn schema(&self) -> &SchemaRef {
        &self.schema
    }

    /// Returns the [`ColumnStats`] of all columns in the batch, if known.
    pub fn column_stats(&self) -> &[ColumnStats] {
        self.stats.as_ref()
    }

    /// Returns the [`ColumnStats`] of a single column in the batch.
    ///
    /// Returns an `Err` if no statistics are available for the given column.
    pub fn get_stats(&self, column: &str) -> PolarsResult<&ColumnStats> {
        self.schema.try_index_of(column).map(|i| &self.stats[i])
    }

    /// Returns the number of rows in the batch.
    ///
    /// Returns `None` if the number of rows is unknown.
    pub fn num_rows(&self) -> Option<usize> {
        self.num_rows
    }

    pub fn with_schema(&mut self, schema: SchemaRef) {
        self.schema = schema;
    }

    pub fn take_indices(&mut self, indices: &[usize]) {
        self.stats = indices.iter().map(|&i| self.stats[i].clone()).collect();
    }
}