polars_core/frame/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
//! DataFrame module.
#[cfg(feature = "zip_with")]
use std::borrow::Cow;
use std::{mem, ops};
use polars_row::ArrayRef;
use polars_utils::itertools::Itertools;
use rayon::prelude::*;
use crate::chunked_array::metadata::MetadataFlags;
#[cfg(feature = "algorithm_group_by")]
use crate::chunked_array::ops::unique::is_unique_helper;
use crate::prelude::*;
#[cfg(feature = "row_hash")]
use crate::utils::split_df;
use crate::utils::{slice_offsets, try_get_supertype, Container, NoNull};
use crate::{HEAD_DEFAULT_LENGTH, TAIL_DEFAULT_LENGTH};
#[cfg(feature = "dataframe_arithmetic")]
mod arithmetic;
mod chunks;
pub mod column;
pub mod explode;
mod from;
#[cfg(feature = "algorithm_group_by")]
pub mod group_by;
pub(crate) mod horizontal;
#[cfg(any(feature = "rows", feature = "object"))]
pub mod row;
mod top_k;
mod upstream_traits;
use arrow::record_batch::{RecordBatch, RecordBatchT};
use polars_utils::pl_str::PlSmallStr;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use strum_macros::IntoStaticStr;
use crate::chunked_array::cast::CastOptions;
#[cfg(feature = "row_hash")]
use crate::hashing::_df_rows_to_hashes_threaded_vertical;
#[cfg(feature = "zip_with")]
use crate::prelude::min_max_binary::min_max_binary_columns;
use crate::prelude::sort::{argsort_multiple_row_fmt, prepare_arg_sort};
use crate::series::IsSorted;
use crate::POOL;
#[derive(Copy, Clone, Debug)]
pub enum NullStrategy {
Ignore,
Propagate,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Default, Hash, IntoStaticStr)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[strum(serialize_all = "snake_case")]
pub enum UniqueKeepStrategy {
/// Keep the first unique row.
First,
/// Keep the last unique row.
Last,
/// Keep None of the unique rows.
None,
/// Keep any of the unique rows
/// This allows more optimizations
#[default]
Any,
}
fn ensure_names_unique<T, F>(items: &[T], mut get_name: F) -> PolarsResult<()>
where
F: for<'a> FnMut(&'a T) -> &'a str,
{
// Always unique.
if items.len() <= 1 {
return Ok(());
}
if items.len() <= 4 {
// Too small to be worth spawning a hashmap for, this is at most 6 comparisons.
for i in 0..items.len() - 1 {
let name = get_name(&items[i]);
for other in items.iter().skip(i + 1) {
if name == get_name(other) {
polars_bail!(duplicate = name);
}
}
}
} else {
let mut names = PlHashSet::with_capacity(items.len());
for item in items {
let name = get_name(item);
if !names.insert(name) {
polars_bail!(duplicate = name);
}
}
}
Ok(())
}
/// A contiguous growable collection of `Series` that have the same length.
///
/// ## Use declarations
///
/// All the common tools can be found in [`crate::prelude`] (or in `polars::prelude`).
///
/// ```rust
/// use polars_core::prelude::*; // if the crate polars-core is used directly
/// // use polars::prelude::*; if the crate polars is used
/// ```
///
/// # Initialization
/// ## Default
///
/// A `DataFrame` can be initialized empty:
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df = DataFrame::default();
/// assert!(df.is_empty());
/// ```
///
/// ## Wrapping a `Vec<Series>`
///
/// A `DataFrame` is built upon a `Vec<Series>` where the `Series` have the same length.
///
/// ```rust
/// # use polars_core::prelude::*;
/// let s1 = Column::new("Fruit".into(), ["Apple", "Apple", "Pear"]);
/// let s2 = Column::new("Color".into(), ["Red", "Yellow", "Green"]);
///
/// let df: PolarsResult<DataFrame> = DataFrame::new(vec![s1, s2]);
/// ```
///
/// ## Using a macro
///
/// The [`df!`] macro is a convenient method:
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df: PolarsResult<DataFrame> = df!("Fruit" => ["Apple", "Apple", "Pear"],
/// "Color" => ["Red", "Yellow", "Green"]);
/// ```
///
/// ## Using a CSV file
///
/// See the `polars_io::csv::CsvReader`.
///
/// # Indexing
/// ## By a number
///
/// The `Index<usize>` is implemented for the `DataFrame`.
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df = df!("Fruit" => ["Apple", "Apple", "Pear"],
/// "Color" => ["Red", "Yellow", "Green"])?;
///
/// assert_eq!(df[0], Column::new("Fruit".into(), &["Apple", "Apple", "Pear"]));
/// assert_eq!(df[1], Column::new("Color".into(), &["Red", "Yellow", "Green"]));
/// # Ok::<(), PolarsError>(())
/// ```
///
/// ## By a `Series` name
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df = df!("Fruit" => ["Apple", "Apple", "Pear"],
/// "Color" => ["Red", "Yellow", "Green"])?;
///
/// assert_eq!(df["Fruit"], Column::new("Fruit".into(), &["Apple", "Apple", "Pear"]));
/// assert_eq!(df["Color"], Column::new("Color".into(), &["Red", "Yellow", "Green"]));
/// # Ok::<(), PolarsError>(())
/// ```
#[derive(Clone)]
pub struct DataFrame {
height: usize,
// invariant: columns[i].len() == height for each 0 >= i > columns.len()
pub(crate) columns: Vec<Column>,
}
impl DataFrame {
#[inline]
pub fn materialized_column_iter(&self) -> impl ExactSizeIterator<Item = &Series> {
self.columns.iter().map(Column::as_materialized_series)
}
#[inline]
pub fn par_materialized_column_iter(&self) -> impl ParallelIterator<Item = &Series> {
self.columns.par_iter().map(Column::as_materialized_series)
}
/// Returns an estimation of the total (heap) allocated size of the `DataFrame` in bytes.
///
/// # Implementation
/// This estimation is the sum of the size of its buffers, validity, including nested arrays.
/// Multiple arrays may share buffers and bitmaps. Therefore, the size of 2 arrays is not the
/// sum of the sizes computed from this function. In particular, [`StructArray`]'s size is an upper bound.
///
/// When an array is sliced, its allocated size remains constant because the buffer unchanged.
/// However, this function will yield a smaller number. This is because this function returns
/// the visible size of the buffer, not its total capacity.
///
/// FFI buffers are included in this estimation.
pub fn estimated_size(&self) -> usize {
self.columns.iter().map(Column::estimated_size).sum()
}
// Reduce monomorphization.
fn try_apply_columns(
&self,
func: &(dyn Fn(&Column) -> PolarsResult<Column> + Send + Sync),
) -> PolarsResult<Vec<Column>> {
self.columns.iter().map(func).collect()
}
// Reduce monomorphization.
pub fn _apply_columns(&self, func: &(dyn Fn(&Column) -> Column)) -> Vec<Column> {
self.columns.iter().map(func).collect()
}
// Reduce monomorphization.
fn try_apply_columns_par(
&self,
func: &(dyn Fn(&Column) -> PolarsResult<Column> + Send + Sync),
) -> PolarsResult<Vec<Column>> {
POOL.install(|| self.columns.par_iter().map(func).collect())
}
// Reduce monomorphization.
pub fn _apply_columns_par(
&self,
func: &(dyn Fn(&Column) -> Column + Send + Sync),
) -> Vec<Column> {
POOL.install(|| self.columns.par_iter().map(func).collect())
}
/// Get the index of the column.
fn check_name_to_idx(&self, name: &str) -> PolarsResult<usize> {
self.get_column_index(name)
.ok_or_else(|| polars_err!(col_not_found = name))
}
fn check_already_present(&self, name: &str) -> PolarsResult<()> {
polars_ensure!(
self.columns.iter().all(|s| s.name().as_str() != name),
Duplicate: "column with name {:?} is already present in the DataFrame", name
);
Ok(())
}
/// Reserve additional slots into the chunks of the series.
pub(crate) fn reserve_chunks(&mut self, additional: usize) {
for s in &mut self.columns {
if let Column::Series(s) = s {
// SAFETY:
// do not modify the data, simply resize.
unsafe { s.chunks_mut().reserve(additional) }
}
}
}
/// Create a DataFrame from a Vector of Series.
///
/// # Example
///
/// ```
/// # use polars_core::prelude::*;
/// let s0 = Column::new("days".into(), [0, 1, 2].as_ref());
/// let s1 = Column::new("temp".into(), [22.1, 19.9, 7.].as_ref());
///
/// let df = DataFrame::new(vec![s0, s1])?;
/// # Ok::<(), PolarsError>(())
/// ```
pub fn new(columns: Vec<Column>) -> PolarsResult<Self> {
ensure_names_unique(&columns, |s| s.name().as_str())?;
let Some(fst) = columns.first() else {
return Ok(DataFrame { height: 0, columns });
};
let height = fst.len();
for col in &columns[1..] {
polars_ensure!(
col.len() == height,
ShapeMismatch: "could not create a new DataFrame: series {:?} has length {} while series {:?} has length {}",
columns[0].name(), height, col.name(), col.len()
);
}
Ok(DataFrame { height, columns })
}
/// Converts a sequence of columns into a DataFrame, broadcasting length-1
/// columns to match the other columns.
pub fn new_with_broadcast(columns: Vec<Column>) -> PolarsResult<Self> {
// The length of the longest non-unit length column determines the
// broadcast length. If all columns are unit-length the broadcast length
// is one.
let broadcast_len = columns
.iter()
.map(|s| s.len())
.filter(|l| *l != 1)
.max()
.unwrap_or(1);
Self::new_with_broadcast_len(columns, broadcast_len)
}
/// Converts a sequence of columns into a DataFrame, broadcasting length-1
/// columns to broadcast_len.
pub fn new_with_broadcast_len(
columns: Vec<Column>,
broadcast_len: usize,
) -> PolarsResult<Self> {
ensure_names_unique(&columns, |s| s.name().as_str())?;
unsafe { Self::new_with_broadcast_no_namecheck(columns, broadcast_len) }
}
/// Converts a sequence of columns into a DataFrame, broadcasting length-1
/// columns to match the other columns.
///
/// # Safety
/// Does not check that the column names are unique (which they must be).
pub unsafe fn new_with_broadcast_no_namecheck(
mut columns: Vec<Column>,
broadcast_len: usize,
) -> PolarsResult<Self> {
for col in &mut columns {
// Length not equal to the broadcast len, needs broadcast or is an error.
let len = col.len();
if len != broadcast_len {
if len != 1 {
let name = col.name().to_owned();
let extra_info =
if let Some(c) = columns.iter().find(|c| c.len() == broadcast_len) {
format!(" (matching column '{}')", c.name())
} else {
String::new()
};
polars_bail!(
ShapeMismatch: "could not create a new DataFrame: series {name:?} has length {len} while trying to broadcast to length {broadcast_len}{extra_info}",
);
}
*col = col.new_from_index(0, broadcast_len);
}
}
let length = if columns.is_empty() { 0 } else { broadcast_len };
Ok(unsafe { DataFrame::new_no_checks(length, columns) })
}
/// Creates an empty `DataFrame` usable in a compile time context (such as static initializers).
///
/// # Example
///
/// ```rust
/// use polars_core::prelude::DataFrame;
/// static EMPTY: DataFrame = DataFrame::empty();
/// ```
pub const fn empty() -> Self {
DataFrame {
height: 0,
columns: vec![],
}
}
/// Create an empty `DataFrame` with empty columns as per the `schema`.
pub fn empty_with_schema(schema: &Schema) -> Self {
let cols = schema
.iter()
.map(|(name, dtype)| Column::from(Series::new_empty(name.clone(), dtype)))
.collect();
unsafe { DataFrame::new_no_checks(0, cols) }
}
/// Create an empty `DataFrame` with empty columns as per the `schema`.
pub fn empty_with_arrow_schema(schema: &ArrowSchema) -> Self {
let cols = schema
.iter_values()
.map(|fld| Column::from(Series::new_empty(fld.name.clone(), &(fld.dtype().into()))))
.collect();
unsafe { DataFrame::new_no_checks(0, cols) }
}
/// Removes the last `Series` from the `DataFrame` and returns it, or [`None`] if it is empty.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let s1 = Column::new("Ocean".into(), ["Atlantic", "Indian"]);
/// let s2 = Column::new("Area (km²)".into(), [106_460_000, 70_560_000]);
/// let mut df = DataFrame::new(vec![s1.clone(), s2.clone()])?;
///
/// assert_eq!(df.pop(), Some(s2));
/// assert_eq!(df.pop(), Some(s1));
/// assert_eq!(df.pop(), None);
/// assert!(df.is_empty());
/// # Ok::<(), PolarsError>(())
/// ```
pub fn pop(&mut self) -> Option<Column> {
self.columns.pop()
}
/// Add a new column at index 0 that counts the rows.
///
/// # Example
///
/// ```
/// # use polars_core::prelude::*;
/// let df1: DataFrame = df!("Name" => ["James", "Mary", "John", "Patricia"])?;
/// assert_eq!(df1.shape(), (4, 1));
///
/// let df2: DataFrame = df1.with_row_index("Id".into(), None)?;
/// assert_eq!(df2.shape(), (4, 2));
/// println!("{}", df2);
///
/// # Ok::<(), PolarsError>(())
/// ```
///
/// Output:
///
/// ```text
/// shape: (4, 2)
/// +-----+----------+
/// | Id | Name |
/// | --- | --- |
/// | u32 | str |
/// +=====+==========+
/// | 0 | James |
/// +-----+----------+
/// | 1 | Mary |
/// +-----+----------+
/// | 2 | John |
/// +-----+----------+
/// | 3 | Patricia |
/// +-----+----------+
/// ```
pub fn with_row_index(&self, name: PlSmallStr, offset: Option<IdxSize>) -> PolarsResult<Self> {
let mut columns = Vec::with_capacity(self.columns.len() + 1);
let offset = offset.unwrap_or(0);
let mut ca = IdxCa::from_vec(
name,
(offset..(self.height() as IdxSize) + offset).collect(),
);
ca.set_sorted_flag(IsSorted::Ascending);
columns.push(ca.into_series().into());
columns.extend_from_slice(&self.columns);
DataFrame::new(columns)
}
/// Add a row index column in place.
pub fn with_row_index_mut(&mut self, name: PlSmallStr, offset: Option<IdxSize>) -> &mut Self {
let offset = offset.unwrap_or(0);
let mut ca = IdxCa::from_vec(
name,
(offset..(self.height() as IdxSize) + offset).collect(),
);
ca.set_sorted_flag(IsSorted::Ascending);
self.columns.insert(0, ca.into_series().into());
self
}
/// Create a new `DataFrame` but does not check the length or duplicate occurrence of the
/// `Series`.
///
/// Calculates the height from the first column or `0` if no columns are given.
///
/// # Safety
///
/// It is the callers responsibility to uphold the contract of all `Series`
/// having an equal length and a unique name, if not this may panic down the line.
pub unsafe fn new_no_checks_height_from_first(columns: Vec<Column>) -> DataFrame {
let height = columns.first().map_or(0, Column::len);
unsafe { Self::new_no_checks(height, columns) }
}
/// Create a new `DataFrame` but does not check the length or duplicate occurrence of the
/// `Series`.
///
/// It is advised to use [DataFrame::new] in favor of this method.
///
/// # Safety
///
/// It is the callers responsibility to uphold the contract of all `Series`
/// having an equal length and a unique name, if not this may panic down the line.
pub unsafe fn new_no_checks(height: usize, columns: Vec<Column>) -> DataFrame {
if cfg!(debug_assertions) {
ensure_names_unique(&columns, |s| s.name().as_str()).unwrap();
for col in &columns {
assert_eq!(col.len(), height);
}
}
unsafe { Self::_new_no_checks_impl(height, columns) }
}
/// This will not panic even in debug mode - there are some (rare) use cases where a DataFrame
/// is temporarily constructed containing duplicates for dispatching to functions. A DataFrame
/// constructed with this method is generally highly unsafe and should not be long-lived.
#[allow(clippy::missing_safety_doc)]
pub const unsafe fn _new_no_checks_impl(height: usize, columns: Vec<Column>) -> DataFrame {
DataFrame { height, columns }
}
/// Create a new `DataFrame` but does not check the length of the `Series`,
/// only check for duplicates.
///
/// It is advised to use [DataFrame::new] in favor of this method.
///
/// # Safety
///
/// It is the callers responsibility to uphold the contract of all `Series`
/// having an equal length, if not this may panic down the line.
pub unsafe fn new_no_length_checks(columns: Vec<Column>) -> PolarsResult<DataFrame> {
ensure_names_unique(&columns, |s| s.name().as_str())?;
Ok(if cfg!(debug_assertions) {
Self::new(columns).unwrap()
} else {
let height = Self::infer_height(&columns);
DataFrame { height, columns }
})
}
/// Shrink the capacity of this DataFrame to fit its length.
pub fn shrink_to_fit(&mut self) {
// Don't parallelize this. Memory overhead
for s in &mut self.columns {
s.shrink_to_fit();
}
}
/// Aggregate all the chunks in the DataFrame to a single chunk.
pub fn as_single_chunk(&mut self) -> &mut Self {
// Don't parallelize this. Memory overhead
for s in &mut self.columns {
if let Column::Series(s) = s {
*s = s.rechunk().into();
}
}
self
}
/// Aggregate all the chunks in the DataFrame to a single chunk in parallel.
/// This may lead to more peak memory consumption.
pub fn as_single_chunk_par(&mut self) -> &mut Self {
if self.columns.iter().any(|c| c.n_chunks() > 1) {
self.columns = self._apply_columns_par(&|s| s.rechunk());
}
self
}
/// Rechunks all columns to only have a single chunk.
pub fn rechunk_mut(&mut self) {
// SAFETY: We never adjust the length or names of the columns.
let columns = unsafe { self.get_columns_mut() };
for col in columns.iter_mut().filter(|c| c.n_chunks() > 1) {
*col = col.rechunk();
}
}
/// Rechunks all columns to only have a single chunk and turns it into a [`RecordBatchT`].
pub fn rechunk_to_record_batch(
self,
compat_level: CompatLevel,
) -> RecordBatchT<Box<dyn Array>> {
let height = self.height();
let arrays = self
.columns
.into_iter()
.map(|col| {
let mut series = col.take_materialized_series();
// Rechunk to one chunk if necessary
if series.n_chunks() > 1 {
series = series.rechunk();
}
series.to_arrow(0, compat_level)
})
.collect();
RecordBatchT::new(height, arrays)
}
/// Returns true if the chunks of the columns do not align and re-chunking should be done
pub fn should_rechunk(&self) -> bool {
// Fast check. It is also needed for correctness, as code below doesn't check if the number
// of chunks is equal.
if !self
.get_columns()
.iter()
.filter_map(|c| c.as_series().map(|s| s.n_chunks()))
.all_equal()
{
return true;
}
// From here we check chunk lengths.
let mut chunk_lengths = self.materialized_column_iter().map(|s| s.chunk_lengths());
match chunk_lengths.next() {
None => false,
Some(first_column_chunk_lengths) => {
// Fast Path for single Chunk Series
if first_column_chunk_lengths.size_hint().0 == 1 {
return chunk_lengths.any(|cl| cl.size_hint().0 != 1);
}
// Always rechunk if we have more chunks than rows.
// except when we have an empty df containing a single chunk
let height = self.height();
let n_chunks = first_column_chunk_lengths.size_hint().0;
if n_chunks > height && !(height == 0 && n_chunks == 1) {
return true;
}
// Slow Path for multi Chunk series
let v: Vec<_> = first_column_chunk_lengths.collect();
for cl in chunk_lengths {
if cl.enumerate().any(|(idx, el)| Some(&el) != v.get(idx)) {
return true;
}
}
false
},
}
}
/// Ensure all the chunks in the [`DataFrame`] are aligned.
pub fn align_chunks_par(&mut self) -> &mut Self {
if self.should_rechunk() {
self.as_single_chunk_par()
} else {
self
}
}
pub fn align_chunks(&mut self) -> &mut Self {
if self.should_rechunk() {
self.as_single_chunk()
} else {
self
}
}
/// Get the [`DataFrame`] schema.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df: DataFrame = df!("Thing" => ["Observable universe", "Human stupidity"],
/// "Diameter (m)" => [8.8e26, f64::INFINITY])?;
///
/// let f1: Field = Field::new("Thing".into(), DataType::String);
/// let f2: Field = Field::new("Diameter (m)".into(), DataType::Float64);
/// let sc: Schema = Schema::from_iter(vec![f1, f2]);
///
/// assert_eq!(df.schema(), sc);
/// # Ok::<(), PolarsError>(())
/// ```
pub fn schema(&self) -> Schema {
self.columns
.iter()
.map(|x| (x.name().clone(), x.dtype().clone()))
.collect()
}
/// Get a reference to the [`DataFrame`] columns.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df: DataFrame = df!("Name" => ["Adenine", "Cytosine", "Guanine", "Thymine"],
/// "Symbol" => ["A", "C", "G", "T"])?;
/// let columns: &[Column] = df.get_columns();
///
/// assert_eq!(columns[0].name(), "Name");
/// assert_eq!(columns[1].name(), "Symbol");
/// # Ok::<(), PolarsError>(())
/// ```
#[inline]
pub fn get_columns(&self) -> &[Column] {
&self.columns
}
#[inline]
/// Get mutable access to the underlying columns.
///
/// # Safety
///
/// The caller must ensure the length of all [`Series`] remains equal to `height` or
/// [`DataFrame::set_height`] is called afterwards with the appropriate `height`.
pub unsafe fn get_columns_mut(&mut self) -> &mut Vec<Column> {
&mut self.columns
}
#[inline]
/// Remove all the columns in the [`DataFrame`] but keep the `height`.
pub fn clear_columns(&mut self) {
unsafe { self.get_columns_mut() }.clear()
}
#[inline]
/// Extend the columns without checking for name collisions or height.
///
/// # Safety
///
/// The caller needs to ensure that:
/// - Column names are unique within the resulting [`DataFrame`].
/// - The length of each appended column matches the height of the [`DataFrame`]. For
/// `DataFrame`]s with no columns (ZCDFs), it is important that the height is set afterwards
/// with [`DataFrame::set_height`].
pub unsafe fn column_extend_unchecked(&mut self, iter: impl Iterator<Item = Column>) {
unsafe { self.get_columns_mut() }.extend(iter)
}
/// Take ownership of the underlying columns vec.
pub fn take_columns(self) -> Vec<Column> {
self.columns
}
/// Iterator over the columns as [`Series`].
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let s1 = Column::new("Name".into(), ["Pythagoras' theorem", "Shannon entropy"]);
/// let s2 = Column::new("Formula".into(), ["a²+b²=c²", "H=-Σ[P(x)log|P(x)|]"]);
/// let df: DataFrame = DataFrame::new(vec![s1.clone(), s2.clone()])?;
///
/// let mut iterator = df.iter();
///
/// assert_eq!(iterator.next(), Some(s1.as_materialized_series()));
/// assert_eq!(iterator.next(), Some(s2.as_materialized_series()));
/// assert_eq!(iterator.next(), None);
/// # Ok::<(), PolarsError>(())
/// ```
pub fn iter(&self) -> impl ExactSizeIterator<Item = &Series> {
self.materialized_column_iter()
}
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df: DataFrame = df!("Language" => ["Rust", "Python"],
/// "Designer" => ["Graydon Hoare", "Guido van Rossum"])?;
///
/// assert_eq!(df.get_column_names(), &["Language", "Designer"]);
/// # Ok::<(), PolarsError>(())
/// ```
pub fn get_column_names(&self) -> Vec<&PlSmallStr> {
self.columns.iter().map(|s| s.name()).collect()
}
/// Get the [`Vec<PlSmallStr>`] representing the column names.
pub fn get_column_names_owned(&self) -> Vec<PlSmallStr> {
self.columns.iter().map(|s| s.name().clone()).collect()
}
pub fn get_column_names_str(&self) -> Vec<&str> {
self.columns.iter().map(|s| s.name().as_str()).collect()
}
/// Set the column names.
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let mut df: DataFrame = df!("Mathematical set" => ["ℕ", "ℤ", "𝔻", "ℚ", "ℝ", "ℂ"])?;
/// df.set_column_names(["Set"])?;
///
/// assert_eq!(df.get_column_names(), &["Set"]);
/// # Ok::<(), PolarsError>(())
/// ```
pub fn set_column_names<I, S>(&mut self, names: I) -> PolarsResult<()>
where
I: IntoIterator<Item = S>,
S: Into<PlSmallStr>,
{
let names = names.into_iter().map(Into::into).collect::<Vec<_>>();
self._set_column_names_impl(names.as_slice())
}
fn _set_column_names_impl(&mut self, names: &[PlSmallStr]) -> PolarsResult<()> {
polars_ensure!(
names.len() == self.width(),
ShapeMismatch: "{} column names provided for a DataFrame of width {}",
names.len(), self.width()
);
ensure_names_unique(names, |s| s.as_str())?;
let columns = mem::take(&mut self.columns);
self.columns = columns
.into_iter()
.zip(names)
.map(|(s, name)| {
let mut s = s;
s.rename(name.clone());
s
})
.collect();
Ok(())
}
/// Get the data types of the columns in the [`DataFrame`].
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let venus_air: DataFrame = df!("Element" => ["Carbon dioxide", "Nitrogen"],
/// "Fraction" => [0.965, 0.035])?;
///
/// assert_eq!(venus_air.dtypes(), &[DataType::String, DataType::Float64]);
/// # Ok::<(), PolarsError>(())
/// ```
pub fn dtypes(&self) -> Vec<DataType> {
self.columns.iter().map(|s| s.dtype().clone()).collect()
}
pub(crate) fn first_series_column(&self) -> Option<&Series> {
self.columns.iter().find_map(|col| col.as_series())
}
/// The number of chunks for the first column.
pub fn first_col_n_chunks(&self) -> usize {
match self.first_series_column() {
None if self.columns.is_empty() => 0,
None => 1,
Some(s) => s.n_chunks(),
}
}
/// The highest number of chunks for any column.
pub fn max_n_chunks(&self) -> usize {
self.columns
.iter()
.map(|s| s.as_series().map(|s| s.n_chunks()).unwrap_or(1))
.max()
.unwrap_or(0)
}
/// Get a reference to the schema fields of the [`DataFrame`].
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let earth: DataFrame = df!("Surface type" => ["Water", "Land"],
/// "Fraction" => [0.708, 0.292])?;
///
/// let f1: Field = Field::new("Surface type".into(), DataType::String);
/// let f2: Field = Field::new("Fraction".into(), DataType::Float64);
///
/// assert_eq!(earth.fields(), &[f1, f2]);
/// # Ok::<(), PolarsError>(())
/// ```
pub fn fields(&self) -> Vec<Field> {
self.columns
.iter()
.map(|s| s.field().into_owned())
.collect()
}
/// Get (height, width) of the [`DataFrame`].
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df0: DataFrame = DataFrame::default();
/// let df1: DataFrame = df!("1" => [1, 2, 3, 4, 5])?;
/// let df2: DataFrame = df!("1" => [1, 2, 3, 4, 5],
/// "2" => [1, 2, 3, 4, 5])?;
///
/// assert_eq!(df0.shape(), (0 ,0));
/// assert_eq!(df1.shape(), (5, 1));
/// assert_eq!(df2.shape(), (5, 2));
/// # Ok::<(), PolarsError>(())
/// ```
pub fn shape(&self) -> (usize, usize) {
(self.height, self.columns.len())
}
/// Get the width of the [`DataFrame`] which is the number of columns.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df0: DataFrame = DataFrame::default();
/// let df1: DataFrame = df!("Series 1" => [0; 0])?;
/// let df2: DataFrame = df!("Series 1" => [0; 0],
/// "Series 2" => [0; 0])?;
///
/// assert_eq!(df0.width(), 0);
/// assert_eq!(df1.width(), 1);
/// assert_eq!(df2.width(), 2);
/// # Ok::<(), PolarsError>(())
/// ```
pub fn width(&self) -> usize {
self.columns.len()
}
/// Get the height of the [`DataFrame`] which is the number of rows.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df0: DataFrame = DataFrame::default();
/// let df1: DataFrame = df!("Currency" => ["€", "$"])?;
/// let df2: DataFrame = df!("Currency" => ["€", "$", "¥", "£", "₿"])?;
///
/// assert_eq!(df0.height(), 0);
/// assert_eq!(df1.height(), 2);
/// assert_eq!(df2.height(), 5);
/// # Ok::<(), PolarsError>(())
/// ```
pub fn height(&self) -> usize {
self.height
}
/// Returns the size as number of rows * number of columns
pub fn size(&self) -> usize {
let s = self.shape();
s.0 * s.1
}
/// Returns `true` if the [`DataFrame`] contains no rows.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df1: DataFrame = DataFrame::default();
/// assert!(df1.is_empty());
///
/// let df2: DataFrame = df!("First name" => ["Forever"],
/// "Last name" => ["Alone"])?;
/// assert!(!df2.is_empty());
/// # Ok::<(), PolarsError>(())
/// ```
pub fn is_empty(&self) -> bool {
matches!(self.shape(), (0, _) | (_, 0))
}
/// Set the height (i.e. number of rows) of this [`DataFrame`].
///
/// # Safety
///
/// This needs to be equal to the length of all the columns.
pub unsafe fn set_height(&mut self, height: usize) {
self.height = height;
}
/// Add multiple [`Series`] to a [`DataFrame`].
/// The added `Series` are required to have the same length.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df1: DataFrame = df!("Element" => ["Copper", "Silver", "Gold"])?;
/// let s1 = Column::new("Proton".into(), [29, 47, 79]);
/// let s2 = Column::new("Electron".into(), [29, 47, 79]);
///
/// let df2: DataFrame = df1.hstack(&[s1, s2])?;
/// assert_eq!(df2.shape(), (3, 3));
/// println!("{}", df2);
/// # Ok::<(), PolarsError>(())
/// ```
///
/// Output:
///
/// ```text
/// shape: (3, 3)
/// +---------+--------+----------+
/// | Element | Proton | Electron |
/// | --- | --- | --- |
/// | str | i32 | i32 |
/// +=========+========+==========+
/// | Copper | 29 | 29 |
/// +---------+--------+----------+
/// | Silver | 47 | 47 |
/// +---------+--------+----------+
/// | Gold | 79 | 79 |
/// +---------+--------+----------+
/// ```
pub fn hstack(&self, columns: &[Column]) -> PolarsResult<Self> {
let mut new_cols = self.columns.clone();
new_cols.extend_from_slice(columns);
DataFrame::new(new_cols)
}
/// Concatenate a [`DataFrame`] to this [`DataFrame`] and return as newly allocated [`DataFrame`].
///
/// If many `vstack` operations are done, it is recommended to call [`DataFrame::align_chunks_par`].
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df1: DataFrame = df!("Element" => ["Copper", "Silver", "Gold"],
/// "Melting Point (K)" => [1357.77, 1234.93, 1337.33])?;
/// let df2: DataFrame = df!("Element" => ["Platinum", "Palladium"],
/// "Melting Point (K)" => [2041.4, 1828.05])?;
///
/// let df3: DataFrame = df1.vstack(&df2)?;
///
/// assert_eq!(df3.shape(), (5, 2));
/// println!("{}", df3);
/// # Ok::<(), PolarsError>(())
/// ```
///
/// Output:
///
/// ```text
/// shape: (5, 2)
/// +-----------+-------------------+
/// | Element | Melting Point (K) |
/// | --- | --- |
/// | str | f64 |
/// +===========+===================+
/// | Copper | 1357.77 |
/// +-----------+-------------------+
/// | Silver | 1234.93 |
/// +-----------+-------------------+
/// | Gold | 1337.33 |
/// +-----------+-------------------+
/// | Platinum | 2041.4 |
/// +-----------+-------------------+
/// | Palladium | 1828.05 |
/// +-----------+-------------------+
/// ```
pub fn vstack(&self, other: &DataFrame) -> PolarsResult<Self> {
let mut df = self.clone();
df.vstack_mut(other)?;
Ok(df)
}
/// Concatenate a [`DataFrame`] to this [`DataFrame`]
///
/// If many `vstack` operations are done, it is recommended to call [`DataFrame::align_chunks_par`].
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let mut df1: DataFrame = df!("Element" => ["Copper", "Silver", "Gold"],
/// "Melting Point (K)" => [1357.77, 1234.93, 1337.33])?;
/// let df2: DataFrame = df!("Element" => ["Platinum", "Palladium"],
/// "Melting Point (K)" => [2041.4, 1828.05])?;
///
/// df1.vstack_mut(&df2)?;
///
/// assert_eq!(df1.shape(), (5, 2));
/// println!("{}", df1);
/// # Ok::<(), PolarsError>(())
/// ```
///
/// Output:
///
/// ```text
/// shape: (5, 2)
/// +-----------+-------------------+
/// | Element | Melting Point (K) |
/// | --- | --- |
/// | str | f64 |
/// +===========+===================+
/// | Copper | 1357.77 |
/// +-----------+-------------------+
/// | Silver | 1234.93 |
/// +-----------+-------------------+
/// | Gold | 1337.33 |
/// +-----------+-------------------+
/// | Platinum | 2041.4 |
/// +-----------+-------------------+
/// | Palladium | 1828.05 |
/// +-----------+-------------------+
/// ```
pub fn vstack_mut(&mut self, other: &DataFrame) -> PolarsResult<&mut Self> {
if self.width() != other.width() {
polars_ensure!(
self.width() == 0,
ShapeMismatch:
"unable to append to a DataFrame of width {} with a DataFrame of width {}",
self.width(), other.width(),
);
self.columns.clone_from(&other.columns);
self.height = other.height;
return Ok(self);
}
self.columns
.iter_mut()
.zip(other.columns.iter())
.try_for_each::<_, PolarsResult<_>>(|(left, right)| {
ensure_can_extend(&*left, right)?;
left.append(right)?;
Ok(())
})?;
self.height += other.height;
Ok(self)
}
/// Concatenate a [`DataFrame`] to this [`DataFrame`]
///
/// If many `vstack` operations are done, it is recommended to call [`DataFrame::align_chunks_par`].
///
/// # Panics
/// Panics if the schema's don't match.
pub fn vstack_mut_unchecked(&mut self, other: &DataFrame) {
self.columns
.iter_mut()
.zip(other.columns.iter())
.for_each(|(left, right)| {
left.append(right).expect("should not fail");
});
self.height += other.height;
}
/// Extend the memory backed by this [`DataFrame`] with the values from `other`.
///
/// Different from [`vstack`](Self::vstack) which adds the chunks from `other` to the chunks of this [`DataFrame`]
/// `extend` appends the data from `other` to the underlying memory locations and thus may cause a reallocation.
///
/// If this does not cause a reallocation, the resulting data structure will not have any extra chunks
/// and thus will yield faster queries.
///
/// Prefer `extend` over `vstack` when you want to do a query after a single append. For instance during
/// online operations where you add `n` rows and rerun a query.
///
/// Prefer `vstack` over `extend` when you want to append many times before doing a query. For instance
/// when you read in multiple files and when to store them in a single `DataFrame`. In the latter case, finish the sequence
/// of `append` operations with a [`rechunk`](Self::align_chunks_par).
pub fn extend(&mut self, other: &DataFrame) -> PolarsResult<()> {
polars_ensure!(
self.width() == other.width(),
ShapeMismatch:
"unable to extend a DataFrame of width {} with a DataFrame of width {}",
self.width(), other.width(),
);
self.columns
.iter_mut()
.zip(other.columns.iter())
.try_for_each::<_, PolarsResult<_>>(|(left, right)| {
ensure_can_extend(&*left, right)?;
left.extend(right)?;
Ok(())
})?;
self.height += other.height;
Ok(())
}
/// Remove a column by name and return the column removed.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let mut df: DataFrame = df!("Animal" => ["Tiger", "Lion", "Great auk"],
/// "IUCN" => ["Endangered", "Vulnerable", "Extinct"])?;
///
/// let s1: PolarsResult<Column> = df.drop_in_place("Average weight");
/// assert!(s1.is_err());
///
/// let s2: Column = df.drop_in_place("Animal")?;
/// assert_eq!(s2, Column::new("Animal".into(), &["Tiger", "Lion", "Great auk"]));
/// # Ok::<(), PolarsError>(())
/// ```
pub fn drop_in_place(&mut self, name: &str) -> PolarsResult<Column> {
let idx = self.check_name_to_idx(name)?;
Ok(self.columns.remove(idx))
}
/// Return a new [`DataFrame`] where all null values are dropped.
///
/// # Example
///
/// ```no_run
/// # use polars_core::prelude::*;
/// let df1: DataFrame = df!("Country" => ["Malta", "Liechtenstein", "North Korea"],
/// "Tax revenue (% GDP)" => [Some(32.7), None, None])?;
/// assert_eq!(df1.shape(), (3, 2));
///
/// let df2: DataFrame = df1.drop_nulls::<String>(None)?;
/// assert_eq!(df2.shape(), (1, 2));
/// println!("{}", df2);
/// # Ok::<(), PolarsError>(())
/// ```
///
/// Output:
///
/// ```text
/// shape: (1, 2)
/// +---------+---------------------+
/// | Country | Tax revenue (% GDP) |
/// | --- | --- |
/// | str | f64 |
/// +=========+=====================+
/// | Malta | 32.7 |
/// +---------+---------------------+
/// ```
pub fn drop_nulls<S>(&self, subset: Option<&[S]>) -> PolarsResult<Self>
where
for<'a> &'a S: Into<PlSmallStr>,
{
if let Some(v) = subset {
let v = self.select_columns(v)?;
self._drop_nulls_impl(v.as_slice())
} else {
self._drop_nulls_impl(self.columns.as_slice())
}
}
fn _drop_nulls_impl(&self, subset: &[Column]) -> PolarsResult<Self> {
// fast path for no nulls in df
if subset.iter().all(|s| !s.has_nulls()) {
return Ok(self.clone());
}
let mut iter = subset.iter();
let mask = iter
.next()
.ok_or_else(|| polars_err!(NoData: "no data to drop nulls from"))?;
let mut mask = mask.is_not_null();
for c in iter {
mask = mask & c.is_not_null();
}
self.filter(&mask)
}
/// Drop a column by name.
/// This is a pure method and will return a new [`DataFrame`] instead of modifying
/// the current one in place.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df1: DataFrame = df!("Ray type" => ["α", "β", "X", "γ"])?;
/// let df2: DataFrame = df1.drop("Ray type")?;
///
/// assert!(df2.is_empty());
/// # Ok::<(), PolarsError>(())
/// ```
pub fn drop(&self, name: &str) -> PolarsResult<Self> {
let idx = self.check_name_to_idx(name)?;
let mut new_cols = Vec::with_capacity(self.columns.len() - 1);
self.columns.iter().enumerate().for_each(|(i, s)| {
if i != idx {
new_cols.push(s.clone())
}
});
Ok(unsafe { DataFrame::new_no_checks(self.height(), new_cols) })
}
/// Drop columns that are in `names`.
pub fn drop_many<I, S>(&self, names: I) -> Self
where
I: IntoIterator<Item = S>,
S: Into<PlSmallStr>,
{
let names: PlHashSet<PlSmallStr> = names.into_iter().map(|s| s.into()).collect();
self.drop_many_amortized(&names)
}
/// Drop columns that are in `names` without allocating a [`HashSet`](std::collections::HashSet).
pub fn drop_many_amortized(&self, names: &PlHashSet<PlSmallStr>) -> DataFrame {
if names.is_empty() {
return self.clone();
}
let mut new_cols = Vec::with_capacity(self.columns.len().saturating_sub(names.len()));
self.columns.iter().for_each(|s| {
if !names.contains(s.name()) {
new_cols.push(s.clone())
}
});
unsafe { DataFrame::new_no_checks(self.height(), new_cols) }
}
/// Insert a new column at a given index without checking for duplicates.
/// This can leave the [`DataFrame`] at an invalid state
fn insert_column_no_name_check(
&mut self,
index: usize,
column: Column,
) -> PolarsResult<&mut Self> {
polars_ensure!(
self.width() == 0 || column.len() == self.height(),
ShapeMismatch: "unable to add a column of length {} to a DataFrame of height {}",
column.len(), self.height(),
);
if self.width() == 0 {
self.height = column.len();
}
self.columns.insert(index, column);
Ok(self)
}
/// Insert a new column at a given index.
pub fn insert_column<S: IntoColumn>(
&mut self,
index: usize,
column: S,
) -> PolarsResult<&mut Self> {
let column = column.into_column();
self.check_already_present(column.name().as_str())?;
self.insert_column_no_name_check(index, column)
}
fn add_column_by_search(&mut self, column: Column) -> PolarsResult<()> {
if let Some(idx) = self.get_column_index(column.name().as_str()) {
self.replace_column(idx, column)?;
} else {
if self.width() == 0 {
self.height = column.len();
}
self.columns.push(column);
}
Ok(())
}
/// Add a new column to this [`DataFrame`] or replace an existing one.
pub fn with_column<C: IntoColumn>(&mut self, column: C) -> PolarsResult<&mut Self> {
fn inner(df: &mut DataFrame, mut column: Column) -> PolarsResult<&mut DataFrame> {
let height = df.height();
if column.len() == 1 && height > 1 {
column = column.new_from_index(0, height);
}
if column.len() == height || df.get_columns().is_empty() {
df.add_column_by_search(column)?;
Ok(df)
}
// special case for literals
else if height == 0 && column.len() == 1 {
let s = column.clear();
df.add_column_by_search(s)?;
Ok(df)
} else {
polars_bail!(
ShapeMismatch: "unable to add a column of length {} to a DataFrame of height {}",
column.len(), height,
);
}
}
let column = column.into_column();
inner(self, column)
}
/// Adds a column to the [`DataFrame`] without doing any checks
/// on length or duplicates.
///
/// # Safety
/// The caller must ensure `self.width() == 0 || column.len() == self.height()` .
pub unsafe fn with_column_unchecked(&mut self, column: Column) -> &mut Self {
debug_assert!(self.width() == 0 || self.height() == column.len());
debug_assert!(self.get_column_index(column.name().as_str()).is_none());
// SAFETY: Invariant of function guarantees for case `width` > 0. We set the height
// properly for `width` == 0.
if self.width() == 0 {
unsafe { self.set_height(column.len()) };
}
unsafe { self.get_columns_mut() }.push(column);
self
}
// Note: Schema can be both input or output_schema
fn add_column_by_schema(&mut self, c: Column, schema: &Schema) -> PolarsResult<()> {
let name = c.name();
if let Some((idx, _, _)) = schema.get_full(name.as_str()) {
if self.columns.get(idx).map(|s| s.name()) != Some(name) {
// Given schema is output_schema and we can push.
if idx == self.columns.len() {
if self.width() == 0 {
self.height = c.len();
}
self.columns.push(c);
}
// Schema is incorrect fallback to search
else {
debug_assert!(false);
self.add_column_by_search(c)?;
}
} else {
self.replace_column(idx, c)?;
}
} else {
if self.width() == 0 {
self.height = c.len();
}
self.columns.push(c);
}
Ok(())
}
// Note: Schema can be both input or output_schema
pub fn _add_series(&mut self, series: Vec<Series>, schema: &Schema) -> PolarsResult<()> {
for (i, s) in series.into_iter().enumerate() {
// we need to branch here
// because users can add multiple columns with the same name
if i == 0 || schema.get(s.name().as_str()).is_some() {
self.with_column_and_schema(s.into_column(), schema)?;
} else {
self.with_column(s.clone().into_column())?;
}
}
Ok(())
}
pub fn _add_columns(&mut self, columns: Vec<Column>, schema: &Schema) -> PolarsResult<()> {
for (i, s) in columns.into_iter().enumerate() {
// we need to branch here
// because users can add multiple columns with the same name
if i == 0 || schema.get(s.name().as_str()).is_some() {
self.with_column_and_schema(s, schema)?;
} else {
self.with_column(s.clone())?;
}
}
Ok(())
}
/// Add a new column to this [`DataFrame`] or replace an existing one.
/// Uses an existing schema to amortize lookups.
/// If the schema is incorrect, we will fallback to linear search.
///
/// Note: Schema can be both input or output_schema
pub fn with_column_and_schema<C: IntoColumn>(
&mut self,
column: C,
schema: &Schema,
) -> PolarsResult<&mut Self> {
let mut column = column.into_column();
let height = self.height();
if column.len() == 1 && height > 1 {
column = column.new_from_index(0, height);
}
if column.len() == height || self.columns.is_empty() {
self.add_column_by_schema(column, schema)?;
Ok(self)
}
// special case for literals
else if height == 0 && column.len() == 1 {
let s = column.clear();
self.add_column_by_schema(s, schema)?;
Ok(self)
} else {
polars_bail!(
ShapeMismatch: "unable to add a column of length {} to a DataFrame of height {}",
column.len(), height,
);
}
}
/// Get a row in the [`DataFrame`]. Beware this is slow.
///
/// # Example
///
/// ```
/// # use polars_core::prelude::*;
/// fn example(df: &mut DataFrame, idx: usize) -> Option<Vec<AnyValue>> {
/// df.get(idx)
/// }
/// ```
pub fn get(&self, idx: usize) -> Option<Vec<AnyValue>> {
match self.columns.first() {
Some(s) => {
if s.len() <= idx {
return None;
}
},
None => return None,
}
// SAFETY: we just checked bounds
unsafe { Some(self.columns.iter().map(|c| c.get_unchecked(idx)).collect()) }
}
/// Select a [`Series`] by index.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df: DataFrame = df!("Star" => ["Sun", "Betelgeuse", "Sirius A", "Sirius B"],
/// "Absolute magnitude" => [4.83, -5.85, 1.42, 11.18])?;
///
/// let s1: Option<&Column> = df.select_at_idx(0);
/// let s2 = Column::new("Star".into(), ["Sun", "Betelgeuse", "Sirius A", "Sirius B"]);
///
/// assert_eq!(s1, Some(&s2));
/// # Ok::<(), PolarsError>(())
/// ```
pub fn select_at_idx(&self, idx: usize) -> Option<&Column> {
self.columns.get(idx)
}
/// Select column(s) from this [`DataFrame`] by range and return a new [`DataFrame`]
///
/// # Examples
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df = df! {
/// "0" => [0, 0, 0],
/// "1" => [1, 1, 1],
/// "2" => [2, 2, 2]
/// }?;
///
/// assert!(df.select(["0", "1"])?.equals(&df.select_by_range(0..=1)?));
/// assert!(df.equals(&df.select_by_range(..)?));
/// # Ok::<(), PolarsError>(())
/// ```
pub fn select_by_range<R>(&self, range: R) -> PolarsResult<Self>
where
R: ops::RangeBounds<usize>,
{
// This function is copied from std::slice::range (https://doc.rust-lang.org/std/slice/fn.range.html)
// because it is the nightly feature. We should change here if this function were stable.
fn get_range<R>(range: R, bounds: ops::RangeTo<usize>) -> ops::Range<usize>
where
R: ops::RangeBounds<usize>,
{
let len = bounds.end;
let start: ops::Bound<&usize> = range.start_bound();
let start = match start {
ops::Bound::Included(&start) => start,
ops::Bound::Excluded(start) => start.checked_add(1).unwrap_or_else(|| {
panic!("attempted to index slice from after maximum usize");
}),
ops::Bound::Unbounded => 0,
};
let end: ops::Bound<&usize> = range.end_bound();
let end = match end {
ops::Bound::Included(end) => end.checked_add(1).unwrap_or_else(|| {
panic!("attempted to index slice up to maximum usize");
}),
ops::Bound::Excluded(&end) => end,
ops::Bound::Unbounded => len,
};
if start > end {
panic!("slice index starts at {start} but ends at {end}");
}
if end > len {
panic!("range end index {end} out of range for slice of length {len}",);
}
ops::Range { start, end }
}
let colnames = self.get_column_names_owned();
let range = get_range(range, ..colnames.len());
self._select_impl(&colnames[range])
}
/// Get column index of a [`Series`] by name.
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df: DataFrame = df!("Name" => ["Player 1", "Player 2", "Player 3"],
/// "Health" => [100, 200, 500],
/// "Mana" => [250, 100, 0],
/// "Strength" => [30, 150, 300])?;
///
/// assert_eq!(df.get_column_index("Name"), Some(0));
/// assert_eq!(df.get_column_index("Health"), Some(1));
/// assert_eq!(df.get_column_index("Mana"), Some(2));
/// assert_eq!(df.get_column_index("Strength"), Some(3));
/// assert_eq!(df.get_column_index("Haste"), None);
/// # Ok::<(), PolarsError>(())
/// ```
pub fn get_column_index(&self, name: &str) -> Option<usize> {
self.columns.iter().position(|s| s.name().as_str() == name)
}
/// Get column index of a [`Series`] by name.
pub fn try_get_column_index(&self, name: &str) -> PolarsResult<usize> {
self.get_column_index(name)
.ok_or_else(|| polars_err!(col_not_found = name))
}
/// Select a single column by name.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let s1 = Column::new("Password".into(), ["123456", "[]B$u$g$s$B#u#n#n#y[]{}"]);
/// let s2 = Column::new("Robustness".into(), ["Weak", "Strong"]);
/// let df: DataFrame = DataFrame::new(vec![s1.clone(), s2])?;
///
/// assert_eq!(df.column("Password")?, &s1);
/// # Ok::<(), PolarsError>(())
/// ```
pub fn column(&self, name: &str) -> PolarsResult<&Column> {
let idx = self.try_get_column_index(name)?;
Ok(self.select_at_idx(idx).unwrap())
}
/// Selected multiple columns by name.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df: DataFrame = df!("Latin name" => ["Oncorhynchus kisutch", "Salmo salar"],
/// "Max weight (kg)" => [16.0, 35.89])?;
/// let sv: Vec<&Column> = df.columns(["Latin name", "Max weight (kg)"])?;
///
/// assert_eq!(&df[0], sv[0]);
/// assert_eq!(&df[1], sv[1]);
/// # Ok::<(), PolarsError>(())
/// ```
pub fn columns<I, S>(&self, names: I) -> PolarsResult<Vec<&Column>>
where
I: IntoIterator<Item = S>,
S: AsRef<str>,
{
names
.into_iter()
.map(|name| self.column(name.as_ref()))
.collect()
}
/// Select column(s) from this [`DataFrame`] and return a new [`DataFrame`].
///
/// # Examples
///
/// ```
/// # use polars_core::prelude::*;
/// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
/// df.select(["foo", "bar"])
/// }
/// ```
pub fn select<I, S>(&self, selection: I) -> PolarsResult<Self>
where
I: IntoIterator<Item = S>,
S: Into<PlSmallStr>,
{
let cols = selection.into_iter().map(|s| s.into()).collect::<Vec<_>>();
self._select_impl(cols.as_slice())
}
pub fn _select_impl(&self, cols: &[PlSmallStr]) -> PolarsResult<Self> {
ensure_names_unique(cols, |s| s.as_str())?;
self._select_impl_unchecked(cols)
}
pub fn _select_impl_unchecked(&self, cols: &[PlSmallStr]) -> PolarsResult<Self> {
let selected = self.select_columns_impl(cols)?;
Ok(unsafe { DataFrame::new_no_checks(self.height(), selected) })
}
/// Select with a known schema.
pub fn select_with_schema<I, S>(&self, selection: I, schema: &SchemaRef) -> PolarsResult<Self>
where
I: IntoIterator<Item = S>,
S: Into<PlSmallStr>,
{
let cols = selection.into_iter().map(|s| s.into()).collect::<Vec<_>>();
self._select_with_schema_impl(&cols, schema, true)
}
/// Select with a known schema. This doesn't check for duplicates.
pub fn select_with_schema_unchecked<I, S>(
&self,
selection: I,
schema: &Schema,
) -> PolarsResult<Self>
where
I: IntoIterator<Item = S>,
S: Into<PlSmallStr>,
{
let cols = selection.into_iter().map(|s| s.into()).collect::<Vec<_>>();
self._select_with_schema_impl(&cols, schema, false)
}
pub fn _select_with_schema_impl(
&self,
cols: &[PlSmallStr],
schema: &Schema,
check_duplicates: bool,
) -> PolarsResult<Self> {
if check_duplicates {
ensure_names_unique(cols, |s| s.as_str())?;
}
let selected = self.select_columns_impl_with_schema(cols, schema)?;
Ok(unsafe { DataFrame::new_no_checks(self.height(), selected) })
}
/// A non generic implementation to reduce compiler bloat.
fn select_columns_impl_with_schema(
&self,
cols: &[PlSmallStr],
schema: &Schema,
) -> PolarsResult<Vec<Column>> {
cols.iter()
.map(|name| {
let index = schema.try_get_full(name.as_str())?.0;
Ok(self.columns[index].clone())
})
.collect()
}
pub fn select_physical<I, S>(&self, selection: I) -> PolarsResult<Self>
where
I: IntoIterator<Item = S>,
S: Into<PlSmallStr>,
{
let cols = selection.into_iter().map(|s| s.into()).collect::<Vec<_>>();
self.select_physical_impl(&cols)
}
fn select_physical_impl(&self, cols: &[PlSmallStr]) -> PolarsResult<Self> {
ensure_names_unique(cols, |s| s.as_str())?;
let selected = self.select_columns_physical_impl(cols)?;
Ok(unsafe { DataFrame::new_no_checks(self.height(), selected) })
}
/// Select column(s) from this [`DataFrame`] and return them into a [`Vec`].
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df: DataFrame = df!("Name" => ["Methane", "Ethane", "Propane"],
/// "Carbon" => [1, 2, 3],
/// "Hydrogen" => [4, 6, 8])?;
/// let sv: Vec<Column> = df.select_columns(["Carbon", "Hydrogen"])?;
///
/// assert_eq!(df["Carbon"], sv[0]);
/// assert_eq!(df["Hydrogen"], sv[1]);
/// # Ok::<(), PolarsError>(())
/// ```
pub fn select_columns(&self, selection: impl IntoVec<PlSmallStr>) -> PolarsResult<Vec<Column>> {
let cols = selection.into_vec();
self.select_columns_impl(&cols)
}
fn _names_to_idx_map(&self) -> PlHashMap<&str, usize> {
self.columns
.iter()
.enumerate()
.map(|(i, s)| (s.name().as_str(), i))
.collect()
}
/// A non generic implementation to reduce compiler bloat.
fn select_columns_physical_impl(&self, cols: &[PlSmallStr]) -> PolarsResult<Vec<Column>> {
let selected = if cols.len() > 1 && self.columns.len() > 10 {
let name_to_idx = self._names_to_idx_map();
cols.iter()
.map(|name| {
let idx = *name_to_idx
.get(name.as_str())
.ok_or_else(|| polars_err!(col_not_found = name))?;
Ok(self.select_at_idx(idx).unwrap().to_physical_repr())
})
.collect::<PolarsResult<Vec<_>>>()?
} else {
cols.iter()
.map(|c| self.column(c.as_str()).map(|s| s.to_physical_repr()))
.collect::<PolarsResult<Vec<_>>>()?
};
Ok(selected)
}
/// A non generic implementation to reduce compiler bloat.
fn select_columns_impl(&self, cols: &[PlSmallStr]) -> PolarsResult<Vec<Column>> {
let selected = if cols.len() > 1 && self.columns.len() > 10 {
// we hash, because there are user that having millions of columns.
// # https://github.com/pola-rs/polars/issues/1023
let name_to_idx = self._names_to_idx_map();
cols.iter()
.map(|name| {
let idx = *name_to_idx
.get(name.as_str())
.ok_or_else(|| polars_err!(col_not_found = name))?;
Ok(self.select_at_idx(idx).unwrap().clone())
})
.collect::<PolarsResult<Vec<_>>>()?
} else {
cols.iter()
.map(|c| self.column(c.as_str()).cloned())
.collect::<PolarsResult<Vec<_>>>()?
};
Ok(selected)
}
fn filter_height(&self, filtered: &[Column], mask: &BooleanChunked) -> usize {
// If there is a filtered column just see how many columns there are left.
if let Some(fst) = filtered.first() {
return fst.len();
}
// Otherwise, count the number of values that would be filtered and return that height.
let num_trues = mask.num_trues();
if mask.len() == self.height() {
num_trues
} else {
// This is for broadcasting masks
debug_assert!(num_trues == 0 || num_trues == 1);
self.height() * num_trues
}
}
/// Take the [`DataFrame`] rows by a boolean mask.
///
/// # Example
///
/// ```
/// # use polars_core::prelude::*;
/// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
/// let mask = df.column("sepal_width")?.is_not_null();
/// df.filter(&mask)
/// }
/// ```
pub fn filter(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
let new_col = self.try_apply_columns_par(&|s| s.filter(mask))?;
let height = self.filter_height(&new_col, mask);
Ok(unsafe { DataFrame::new_no_checks(height, new_col) })
}
/// Same as `filter` but does not parallelize.
pub fn _filter_seq(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
let new_col = self.try_apply_columns(&|s| s.filter(mask))?;
let height = self.filter_height(&new_col, mask);
Ok(unsafe { DataFrame::new_no_checks(height, new_col) })
}
/// Take [`DataFrame`] rows by index values.
///
/// # Example
///
/// ```
/// # use polars_core::prelude::*;
/// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
/// let idx = IdxCa::new("idx".into(), [0, 1, 9]);
/// df.take(&idx)
/// }
/// ```
pub fn take(&self, indices: &IdxCa) -> PolarsResult<Self> {
let new_col = POOL.install(|| self.try_apply_columns_par(&|s| s.take(indices)))?;
Ok(unsafe { DataFrame::new_no_checks(indices.len(), new_col) })
}
/// # Safety
/// The indices must be in-bounds.
pub unsafe fn take_unchecked(&self, idx: &IdxCa) -> Self {
self.take_unchecked_impl(idx, true)
}
/// # Safety
/// The indices must be in-bounds.
pub unsafe fn take_unchecked_impl(&self, idx: &IdxCa, allow_threads: bool) -> Self {
let cols = if allow_threads {
POOL.install(|| self._apply_columns_par(&|c| c.take_unchecked(idx)))
} else {
self._apply_columns(&|s| s.take_unchecked(idx))
};
unsafe { DataFrame::new_no_checks(idx.len(), cols) }
}
pub(crate) unsafe fn take_slice_unchecked(&self, idx: &[IdxSize]) -> Self {
self.take_slice_unchecked_impl(idx, true)
}
unsafe fn take_slice_unchecked_impl(&self, idx: &[IdxSize], allow_threads: bool) -> Self {
let cols = if allow_threads {
POOL.install(|| self._apply_columns_par(&|s| s.take_slice_unchecked(idx)))
} else {
self._apply_columns(&|s| s.take_slice_unchecked(idx))
};
unsafe { DataFrame::new_no_checks(idx.len(), cols) }
}
/// Rename a column in the [`DataFrame`].
///
/// # Example
///
/// ```
/// # use polars_core::prelude::*;
/// fn example(df: &mut DataFrame) -> PolarsResult<&mut DataFrame> {
/// let original_name = "foo";
/// let new_name = "bar";
/// df.rename(original_name, new_name.into())
/// }
/// ```
pub fn rename(&mut self, column: &str, name: PlSmallStr) -> PolarsResult<&mut Self> {
if column == name.as_str() {
return Ok(self);
}
polars_ensure!(
self.columns.iter().all(|c| c.name() != &name),
Duplicate: "column rename attempted with already existing name \"{name}\""
);
self.get_column_index(column)
.and_then(|idx| self.columns.get_mut(idx))
.ok_or_else(|| polars_err!(col_not_found = column))
.map(|c| c.rename(name))?;
Ok(self)
}
/// Sort [`DataFrame`] in place.
///
/// See [`DataFrame::sort`] for more instruction.
pub fn sort_in_place(
&mut self,
by: impl IntoVec<PlSmallStr>,
sort_options: SortMultipleOptions,
) -> PolarsResult<&mut Self> {
let by_column = self.select_columns(by)?;
self.columns = self.sort_impl(by_column, sort_options, None)?.columns;
Ok(self)
}
#[doc(hidden)]
/// This is the dispatch of Self::sort, and exists to reduce compile bloat by monomorphization.
pub fn sort_impl(
&self,
by_column: Vec<Column>,
mut sort_options: SortMultipleOptions,
slice: Option<(i64, usize)>,
) -> PolarsResult<Self> {
if by_column.is_empty() {
// If no columns selected, any order (including original order) is correct.
return if let Some((offset, len)) = slice {
Ok(self.slice(offset, len))
} else {
Ok(self.clone())
};
}
// note that the by_column argument also contains evaluated expression from
// polars-lazy that may not even be present in this dataframe. therefore
// when we try to set the first columns as sorted, we ignore the error as
// expressions are not present (they are renamed to _POLARS_SORT_COLUMN_i.
let first_descending = sort_options.descending[0];
let first_by_column = by_column[0].name().to_string();
let set_sorted = |df: &mut DataFrame| {
// Mark the first sort column as sorted; if the column does not exist it
// is ok, because we sorted by an expression not present in the dataframe
let _ = df.apply(&first_by_column, |s| {
let mut s = s.clone();
if first_descending {
s.set_sorted_flag(IsSorted::Descending)
} else {
s.set_sorted_flag(IsSorted::Ascending)
}
s
});
};
if self.is_empty() {
let mut out = self.clone();
set_sorted(&mut out);
return Ok(out);
}
if let Some((0, k)) = slice {
let desc = if sort_options.descending.len() == 1 {
sort_options.descending[0]
} else {
false
};
sort_options.limit = Some((k as IdxSize, desc));
return self.bottom_k_impl(k, by_column, sort_options);
}
#[cfg(feature = "dtype-struct")]
let has_struct = by_column
.iter()
.any(|s| matches!(s.dtype(), DataType::Struct(_)));
#[cfg(not(feature = "dtype-struct"))]
#[allow(non_upper_case_globals)]
const has_struct: bool = false;
// a lot of indirection in both sorting and take
let mut df = self.clone();
let df = df.as_single_chunk_par();
let mut take = match (by_column.len(), has_struct) {
(1, false) => {
let s = &by_column[0];
let options = SortOptions {
descending: sort_options.descending[0],
nulls_last: sort_options.nulls_last[0],
multithreaded: sort_options.multithreaded,
maintain_order: sort_options.maintain_order,
limit: sort_options.limit,
};
// fast path for a frame with a single series
// no need to compute the sort indices and then take by these indices
// simply sort and return as frame
if df.width() == 1 && df.check_name_to_idx(s.name().as_str()).is_ok() {
let mut out = s.sort_with(options)?;
if let Some((offset, len)) = slice {
out = out.slice(offset, len);
}
return Ok(out.into_frame());
}
s.arg_sort(options)
},
_ => {
if sort_options.nulls_last.iter().all(|&x| x)
|| has_struct
|| std::env::var("POLARS_ROW_FMT_SORT").is_ok()
{
argsort_multiple_row_fmt(
&by_column,
sort_options.descending,
sort_options.nulls_last,
sort_options.multithreaded,
)?
} else {
let (first, other) = prepare_arg_sort(by_column, &mut sort_options)?;
first
.as_materialized_series()
.arg_sort_multiple(&other, &sort_options)?
}
},
};
if let Some((offset, len)) = slice {
take = take.slice(offset, len);
}
// SAFETY:
// the created indices are in bounds
let mut df = unsafe { df.take_unchecked_impl(&take, sort_options.multithreaded) };
set_sorted(&mut df);
Ok(df)
}
/// Create a `DataFrame` that has fields for all the known runtime metadata for each column.
///
/// This dataframe does not necessarily have a specified schema and may be changed at any
/// point. It is primarily used for debugging.
pub fn _to_metadata(&self) -> DataFrame {
let num_columns = self.columns.len();
let mut column_names =
StringChunkedBuilder::new(PlSmallStr::from_static("column_name"), num_columns);
let mut repr_ca = StringChunkedBuilder::new(PlSmallStr::from_static("repr"), num_columns);
let mut sorted_asc_ca =
BooleanChunkedBuilder::new(PlSmallStr::from_static("sorted_asc"), num_columns);
let mut sorted_dsc_ca =
BooleanChunkedBuilder::new(PlSmallStr::from_static("sorted_dsc"), num_columns);
let mut fast_explode_list_ca =
BooleanChunkedBuilder::new(PlSmallStr::from_static("fast_explode_list"), num_columns);
let mut min_value_ca =
StringChunkedBuilder::new(PlSmallStr::from_static("min_value"), num_columns);
let mut max_value_ca =
StringChunkedBuilder::new(PlSmallStr::from_static("max_value"), num_columns);
let mut distinct_count_ca: Vec<Option<IdxSize>> = Vec::with_capacity(num_columns);
let mut materialized_at_ca =
StringChunkedBuilder::new(PlSmallStr::from_static("materialized_at"), num_columns);
for col in &self.columns {
let metadata = col.get_metadata();
let (flags, min_value, max_value, distinct_count) =
metadata.map_or((MetadataFlags::default(), None, None, None), |md| {
(
md.get_flags(),
md.min_value(),
md.max_value(),
md.distinct_count(),
)
});
let (repr, materialized_at) = match col {
Column::Series(s) => ("series", s.materialized_at()),
Column::Partitioned(_) => ("partitioned", None),
Column::Scalar(_) => ("scalar", None),
};
let sorted_asc = flags.contains(MetadataFlags::SORTED_ASC);
let sorted_dsc = flags.contains(MetadataFlags::SORTED_DSC);
let fast_explode_list = flags.contains(MetadataFlags::FAST_EXPLODE_LIST);
column_names.append_value(col.name().clone());
repr_ca.append_value(repr);
sorted_asc_ca.append_value(sorted_asc);
sorted_dsc_ca.append_value(sorted_dsc);
fast_explode_list_ca.append_value(fast_explode_list);
min_value_ca.append_option(min_value.map(|v| v.as_any_value().to_string()));
max_value_ca.append_option(max_value.map(|v| v.as_any_value().to_string()));
distinct_count_ca.push(distinct_count);
materialized_at_ca.append_option(materialized_at.map(|v| format!("{v:#?}")));
}
unsafe {
DataFrame::new_no_checks(
self.width(),
vec![
column_names.finish().into_column(),
repr_ca.finish().into_column(),
sorted_asc_ca.finish().into_column(),
sorted_dsc_ca.finish().into_column(),
fast_explode_list_ca.finish().into_column(),
min_value_ca.finish().into_column(),
max_value_ca.finish().into_column(),
IdxCa::from_slice_options(
PlSmallStr::from_static("distinct_count"),
&distinct_count_ca[..],
)
.into_column(),
materialized_at_ca.finish().into_column(),
],
)
}
}
/// Return a sorted clone of this [`DataFrame`].
///
/// # Example
///
/// Sort by a single column with default options:
/// ```
/// # use polars_core::prelude::*;
/// fn sort_by_sepal_width(df: &DataFrame) -> PolarsResult<DataFrame> {
/// df.sort(["sepal_width"], Default::default())
/// }
/// ```
/// Sort by a single column with specific order:
/// ```
/// # use polars_core::prelude::*;
/// fn sort_with_specific_order(df: &DataFrame, descending: bool) -> PolarsResult<DataFrame> {
/// df.sort(
/// ["sepal_width"],
/// SortMultipleOptions::new()
/// .with_order_descending(descending)
/// )
/// }
/// ```
/// Sort by multiple columns with specifying order for each column:
/// ```
/// # use polars_core::prelude::*;
/// fn sort_by_multiple_columns_with_specific_order(df: &DataFrame) -> PolarsResult<DataFrame> {
/// df.sort(
/// ["sepal_width", "sepal_length"],
/// SortMultipleOptions::new()
/// .with_order_descending_multi([false, true])
/// )
/// }
/// ```
/// See [`SortMultipleOptions`] for more options.
///
/// Also see [`DataFrame::sort_in_place`].
pub fn sort(
&self,
by: impl IntoVec<PlSmallStr>,
sort_options: SortMultipleOptions,
) -> PolarsResult<Self> {
let mut df = self.clone();
df.sort_in_place(by, sort_options)?;
Ok(df)
}
/// Replace a column with a [`Series`].
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let mut df: DataFrame = df!("Country" => ["United States", "China"],
/// "Area (km²)" => [9_833_520, 9_596_961])?;
/// let s: Series = Series::new("Country".into(), ["USA", "PRC"]);
///
/// assert!(df.replace("Nation", s.clone()).is_err());
/// assert!(df.replace("Country", s).is_ok());
/// # Ok::<(), PolarsError>(())
/// ```
pub fn replace<S: IntoSeries>(&mut self, column: &str, new_col: S) -> PolarsResult<&mut Self> {
self.apply(column, |_| new_col.into_series())
}
/// Replace or update a column. The difference between this method and [DataFrame::with_column]
/// is that now the value of `column: &str` determines the name of the column and not the name
/// of the `Series` passed to this method.
pub fn replace_or_add<S: IntoSeries>(
&mut self,
column: PlSmallStr,
new_col: S,
) -> PolarsResult<&mut Self> {
let mut new_col = new_col.into_series();
new_col.rename(column);
self.with_column(new_col)
}
/// Replace column at index `idx` with a [`Series`].
///
/// # Example
///
/// ```ignored
/// # use polars_core::prelude::*;
/// let s0 = Series::new("foo".into(), ["ham", "spam", "egg"]);
/// let s1 = Series::new("ascii".into(), [70, 79, 79]);
/// let mut df = DataFrame::new(vec![s0, s1])?;
///
/// // Add 32 to get lowercase ascii values
/// df.replace_column(1, df.select_at_idx(1).unwrap() + 32);
/// # Ok::<(), PolarsError>(())
/// ```
pub fn replace_column<C: IntoColumn>(
&mut self,
index: usize,
new_column: C,
) -> PolarsResult<&mut Self> {
polars_ensure!(
index < self.width(),
ShapeMismatch:
"unable to replace at index {}, the DataFrame has only {} columns",
index, self.width(),
);
let mut new_column = new_column.into_column();
polars_ensure!(
new_column.len() == self.height(),
ShapeMismatch:
"unable to replace a column, series length {} doesn't match the DataFrame height {}",
new_column.len(), self.height(),
);
let old_col = &mut self.columns[index];
mem::swap(old_col, &mut new_column);
Ok(self)
}
/// Apply a closure to a column. This is the recommended way to do in place modification.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let s0 = Column::new("foo".into(), ["ham", "spam", "egg"]);
/// let s1 = Column::new("names".into(), ["Jean", "Claude", "van"]);
/// let mut df = DataFrame::new(vec![s0, s1])?;
///
/// fn str_to_len(str_val: &Column) -> Column {
/// str_val.str()
/// .unwrap()
/// .into_iter()
/// .map(|opt_name: Option<&str>| {
/// opt_name.map(|name: &str| name.len() as u32)
/// })
/// .collect::<UInt32Chunked>()
/// .into_column()
/// }
///
/// // Replace the names column by the length of the names.
/// df.apply("names", str_to_len);
/// # Ok::<(), PolarsError>(())
/// ```
/// Results in:
///
/// ```text
/// +--------+-------+
/// | foo | |
/// | --- | names |
/// | str | u32 |
/// +========+=======+
/// | "ham" | 4 |
/// +--------+-------+
/// | "spam" | 6 |
/// +--------+-------+
/// | "egg" | 3 |
/// +--------+-------+
/// ```
pub fn apply<F, C>(&mut self, name: &str, f: F) -> PolarsResult<&mut Self>
where
F: FnOnce(&Column) -> C,
C: IntoColumn,
{
let idx = self.check_name_to_idx(name)?;
self.apply_at_idx(idx, f)
}
/// Apply a closure to a column at index `idx`. This is the recommended way to do in place
/// modification.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let s0 = Column::new("foo".into(), ["ham", "spam", "egg"]);
/// let s1 = Column::new("ascii".into(), [70, 79, 79]);
/// let mut df = DataFrame::new(vec![s0, s1])?;
///
/// // Add 32 to get lowercase ascii values
/// df.apply_at_idx(1, |s| s + 32);
/// # Ok::<(), PolarsError>(())
/// ```
/// Results in:
///
/// ```text
/// +--------+-------+
/// | foo | ascii |
/// | --- | --- |
/// | str | i32 |
/// +========+=======+
/// | "ham" | 102 |
/// +--------+-------+
/// | "spam" | 111 |
/// +--------+-------+
/// | "egg" | 111 |
/// +--------+-------+
/// ```
pub fn apply_at_idx<F, C>(&mut self, idx: usize, f: F) -> PolarsResult<&mut Self>
where
F: FnOnce(&Column) -> C,
C: IntoColumn,
{
let df_height = self.height();
let width = self.width();
let col = self.columns.get_mut(idx).ok_or_else(|| {
polars_err!(
ComputeError: "invalid column index: {} for a DataFrame with {} columns",
idx, width
)
})?;
let name = col.name().clone();
let new_col = f(col).into_column();
match new_col.len() {
1 => {
let new_col = new_col.new_from_index(0, df_height);
let _ = mem::replace(col, new_col);
},
len if (len == df_height) => {
let _ = mem::replace(col, new_col);
},
len => polars_bail!(
ShapeMismatch:
"resulting Series has length {} while the DataFrame has height {}",
len, df_height
),
}
// make sure the name remains the same after applying the closure
unsafe {
let col = self.columns.get_unchecked_mut(idx);
col.rename(name);
}
Ok(self)
}
/// Apply a closure that may fail to a column at index `idx`. This is the recommended way to do in place
/// modification.
///
/// # Example
///
/// This is the idiomatic way to replace some values a column of a `DataFrame` given range of indexes.
///
/// ```rust
/// # use polars_core::prelude::*;
/// let s0 = Column::new("foo".into(), ["ham", "spam", "egg", "bacon", "quack"]);
/// let s1 = Column::new("values".into(), [1, 2, 3, 4, 5]);
/// let mut df = DataFrame::new(vec![s0, s1])?;
///
/// let idx = vec![0, 1, 4];
///
/// df.try_apply("foo", |c| {
/// c.str()?
/// .scatter_with(idx, |opt_val| opt_val.map(|string| format!("{}-is-modified", string)))
/// });
/// # Ok::<(), PolarsError>(())
/// ```
/// Results in:
///
/// ```text
/// +---------------------+--------+
/// | foo | values |
/// | --- | --- |
/// | str | i32 |
/// +=====================+========+
/// | "ham-is-modified" | 1 |
/// +---------------------+--------+
/// | "spam-is-modified" | 2 |
/// +---------------------+--------+
/// | "egg" | 3 |
/// +---------------------+--------+
/// | "bacon" | 4 |
/// +---------------------+--------+
/// | "quack-is-modified" | 5 |
/// +---------------------+--------+
/// ```
pub fn try_apply_at_idx<F, C>(&mut self, idx: usize, f: F) -> PolarsResult<&mut Self>
where
F: FnOnce(&Column) -> PolarsResult<C>,
C: IntoColumn,
{
let width = self.width();
let col = self.columns.get_mut(idx).ok_or_else(|| {
polars_err!(
ComputeError: "invalid column index: {} for a DataFrame with {} columns",
idx, width
)
})?;
let name = col.name().clone();
let _ = mem::replace(col, f(col).map(|c| c.into_column())?);
// make sure the name remains the same after applying the closure
unsafe {
let col = self.columns.get_unchecked_mut(idx);
col.rename(name);
}
Ok(self)
}
/// Apply a closure that may fail to a column. This is the recommended way to do in place
/// modification.
///
/// # Example
///
/// This is the idiomatic way to replace some values a column of a `DataFrame` given a boolean mask.
///
/// ```rust
/// # use polars_core::prelude::*;
/// let s0 = Column::new("foo".into(), ["ham", "spam", "egg", "bacon", "quack"]);
/// let s1 = Column::new("values".into(), [1, 2, 3, 4, 5]);
/// let mut df = DataFrame::new(vec![s0, s1])?;
///
/// // create a mask
/// let values = df.column("values")?.as_materialized_series();
/// let mask = values.lt_eq(1)? | values.gt_eq(5_i32)?;
///
/// df.try_apply("foo", |c| {
/// c.str()?
/// .set(&mask, Some("not_within_bounds"))
/// });
/// # Ok::<(), PolarsError>(())
/// ```
/// Results in:
///
/// ```text
/// +---------------------+--------+
/// | foo | values |
/// | --- | --- |
/// | str | i32 |
/// +=====================+========+
/// | "not_within_bounds" | 1 |
/// +---------------------+--------+
/// | "spam" | 2 |
/// +---------------------+--------+
/// | "egg" | 3 |
/// +---------------------+--------+
/// | "bacon" | 4 |
/// +---------------------+--------+
/// | "not_within_bounds" | 5 |
/// +---------------------+--------+
/// ```
pub fn try_apply<F, C>(&mut self, column: &str, f: F) -> PolarsResult<&mut Self>
where
F: FnOnce(&Series) -> PolarsResult<C>,
C: IntoColumn,
{
let idx = self.try_get_column_index(column)?;
self.try_apply_at_idx(idx, |c| f(c.as_materialized_series()))
}
/// Slice the [`DataFrame`] along the rows.
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let df: DataFrame = df!("Fruit" => ["Apple", "Grape", "Grape", "Fig", "Fig"],
/// "Color" => ["Green", "Red", "White", "White", "Red"])?;
/// let sl: DataFrame = df.slice(2, 3);
///
/// assert_eq!(sl.shape(), (3, 2));
/// println!("{}", sl);
/// # Ok::<(), PolarsError>(())
/// ```
/// Output:
/// ```text
/// shape: (3, 2)
/// +-------+-------+
/// | Fruit | Color |
/// | --- | --- |
/// | str | str |
/// +=======+=======+
/// | Grape | White |
/// +-------+-------+
/// | Fig | White |
/// +-------+-------+
/// | Fig | Red |
/// +-------+-------+
/// ```
#[must_use]
pub fn slice(&self, offset: i64, length: usize) -> Self {
if offset == 0 && length == self.height() {
return self.clone();
}
if length == 0 {
return self.clear();
}
let col = self
.columns
.iter()
.map(|s| s.slice(offset, length))
.collect::<Vec<_>>();
let height = if let Some(fst) = col.first() {
fst.len()
} else {
let (_, length) = slice_offsets(offset, length, self.height());
length
};
unsafe { DataFrame::new_no_checks(height, col) }
}
/// Split [`DataFrame`] at the given `offset`.
pub fn split_at(&self, offset: i64) -> (Self, Self) {
let (a, b) = self.columns.iter().map(|s| s.split_at(offset)).unzip();
let (idx, _) = slice_offsets(offset, 0, self.height());
let a = unsafe { DataFrame::new_no_checks(idx, a) };
let b = unsafe { DataFrame::new_no_checks(self.height() - idx, b) };
(a, b)
}
pub fn clear(&self) -> Self {
let col = self.columns.iter().map(|s| s.clear()).collect::<Vec<_>>();
unsafe { DataFrame::new_no_checks(0, col) }
}
#[must_use]
pub fn slice_par(&self, offset: i64, length: usize) -> Self {
if offset == 0 && length == self.height() {
return self.clone();
}
let columns = self._apply_columns_par(&|s| s.slice(offset, length));
unsafe { DataFrame::new_no_checks(length, columns) }
}
#[must_use]
pub fn _slice_and_realloc(&self, offset: i64, length: usize) -> Self {
if offset == 0 && length == self.height() {
return self.clone();
}
// @scalar-opt
let columns = self._apply_columns(&|s| {
let mut out = s.slice(offset, length);
out.shrink_to_fit();
out
});
unsafe { DataFrame::new_no_checks(length, columns) }
}
/// Get the head of the [`DataFrame`].
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let countries: DataFrame =
/// df!("Rank by GDP (2021)" => [1, 2, 3, 4, 5],
/// "Continent" => ["North America", "Asia", "Asia", "Europe", "Europe"],
/// "Country" => ["United States", "China", "Japan", "Germany", "United Kingdom"],
/// "Capital" => ["Washington", "Beijing", "Tokyo", "Berlin", "London"])?;
/// assert_eq!(countries.shape(), (5, 4));
///
/// println!("{}", countries.head(Some(3)));
/// # Ok::<(), PolarsError>(())
/// ```
///
/// Output:
///
/// ```text
/// shape: (3, 4)
/// +--------------------+---------------+---------------+------------+
/// | Rank by GDP (2021) | Continent | Country | Capital |
/// | --- | --- | --- | --- |
/// | i32 | str | str | str |
/// +====================+===============+===============+============+
/// | 1 | North America | United States | Washington |
/// +--------------------+---------------+---------------+------------+
/// | 2 | Asia | China | Beijing |
/// +--------------------+---------------+---------------+------------+
/// | 3 | Asia | Japan | Tokyo |
/// +--------------------+---------------+---------------+------------+
/// ```
#[must_use]
pub fn head(&self, length: Option<usize>) -> Self {
let col = self
.columns
.iter()
.map(|c| c.head(length))
.collect::<Vec<_>>();
let height = length.unwrap_or(HEAD_DEFAULT_LENGTH);
let height = usize::min(height, self.height());
unsafe { DataFrame::new_no_checks(height, col) }
}
/// Get the tail of the [`DataFrame`].
///
/// # Example
///
/// ```rust
/// # use polars_core::prelude::*;
/// let countries: DataFrame =
/// df!("Rank (2021)" => [105, 106, 107, 108, 109],
/// "Apple Price (€/kg)" => [0.75, 0.70, 0.70, 0.65, 0.52],
/// "Country" => ["Kosovo", "Moldova", "North Macedonia", "Syria", "Turkey"])?;
/// assert_eq!(countries.shape(), (5, 3));
///
/// println!("{}", countries.tail(Some(2)));
/// # Ok::<(), PolarsError>(())
/// ```
///
/// Output:
///
/// ```text
/// shape: (2, 3)
/// +-------------+--------------------+---------+
/// | Rank (2021) | Apple Price (€/kg) | Country |
/// | --- | --- | --- |
/// | i32 | f64 | str |
/// +=============+====================+=========+
/// | 108 | 0.63 | Syria |
/// +-------------+--------------------+---------+
/// | 109 | 0.63 | Turkey |
/// +-------------+--------------------+---------+
/// ```
#[must_use]
pub fn tail(&self, length: Option<usize>) -> Self {
let col = self
.columns
.iter()
.map(|c| c.tail(length))
.collect::<Vec<_>>();
let height = length.unwrap_or(TAIL_DEFAULT_LENGTH);
let height = usize::min(height, self.height());
unsafe { DataFrame::new_no_checks(height, col) }
}
/// Iterator over the rows in this [`DataFrame`] as Arrow RecordBatches.
///
/// # Panics
///
/// Panics if the [`DataFrame`] that is passed is not rechunked.
///
/// This responsibility is left to the caller as we don't want to take mutable references here,
/// but we also don't want to rechunk here, as this operation is costly and would benefit the caller
/// as well.
pub fn iter_chunks(&self, compat_level: CompatLevel, parallel: bool) -> RecordBatchIter {
debug_assert!(!self.should_rechunk(), "expected equal chunks");
// If any of the columns is binview and we don't convert `compat_level` we allow parallelism
// as we must allocate arrow strings/binaries.
let must_convert = compat_level.0 == 0;
let parallel = parallel
&& must_convert
&& self.columns.len() > 1
&& self
.columns
.iter()
.any(|s| matches!(s.dtype(), DataType::String | DataType::Binary));
RecordBatchIter {
columns: &self.columns,
idx: 0,
n_chunks: self.first_col_n_chunks(),
compat_level,
parallel,
}
}
/// Iterator over the rows in this [`DataFrame`] as Arrow RecordBatches as physical values.
///
/// # Panics
///
/// Panics if the [`DataFrame`] that is passed is not rechunked.
///
/// This responsibility is left to the caller as we don't want to take mutable references here,
/// but we also don't want to rechunk here, as this operation is costly and would benefit the caller
/// as well.
pub fn iter_chunks_physical(&self) -> PhysRecordBatchIter<'_> {
PhysRecordBatchIter {
iters: self
.materialized_column_iter()
.map(|s| s.chunks().iter())
.collect(),
}
}
/// Get a [`DataFrame`] with all the columns in reversed order.
#[must_use]
pub fn reverse(&self) -> Self {
let col = self.columns.iter().map(|s| s.reverse()).collect::<Vec<_>>();
unsafe { DataFrame::new_no_checks(self.height(), col) }
}
/// Shift the values by a given period and fill the parts that will be empty due to this operation
/// with `Nones`.
///
/// See the method on [Series](crate::series::SeriesTrait::shift) for more info on the `shift` operation.
#[must_use]
pub fn shift(&self, periods: i64) -> Self {
let col = self._apply_columns_par(&|s| s.shift(periods));
unsafe { DataFrame::new_no_checks(self.height(), col) }
}
/// Replace None values with one of the following strategies:
/// * Forward fill (replace None with the previous value)
/// * Backward fill (replace None with the next value)
/// * Mean fill (replace None with the mean of the whole array)
/// * Min fill (replace None with the minimum of the whole array)
/// * Max fill (replace None with the maximum of the whole array)
///
/// See the method on [Series](crate::series::Series::fill_null) for more info on the `fill_null` operation.
pub fn fill_null(&self, strategy: FillNullStrategy) -> PolarsResult<Self> {
let col = self.try_apply_columns_par(&|s| s.fill_null(strategy))?;
Ok(unsafe { DataFrame::new_no_checks(self.height(), col) })
}
/// Aggregate the column horizontally to their min values.
#[cfg(feature = "zip_with")]
pub fn min_horizontal(&self) -> PolarsResult<Option<Column>> {
let min_fn = |acc: &Column, s: &Column| min_max_binary_columns(acc, s, true);
match self.columns.len() {
0 => Ok(None),
1 => Ok(Some(self.columns[0].clone())),
2 => min_fn(&self.columns[0], &self.columns[1]).map(Some),
_ => {
// the try_reduce_with is a bit slower in parallelism,
// but I don't think it matters here as we parallelize over columns, not over elements
POOL.install(|| {
self.columns
.par_iter()
.map(|s| Ok(Cow::Borrowed(s)))
.try_reduce_with(|l, r| min_fn(&l, &r).map(Cow::Owned))
// we can unwrap the option, because we are certain there is a column
// we started this operation on 3 columns
.unwrap()
.map(|cow| Some(cow.into_owned()))
})
},
}
}
/// Aggregate the column horizontally to their max values.
#[cfg(feature = "zip_with")]
pub fn max_horizontal(&self) -> PolarsResult<Option<Column>> {
let max_fn = |acc: &Column, s: &Column| min_max_binary_columns(acc, s, false);
match self.columns.len() {
0 => Ok(None),
1 => Ok(Some(self.columns[0].clone())),
2 => max_fn(&self.columns[0], &self.columns[1]).map(Some),
_ => {
// the try_reduce_with is a bit slower in parallelism,
// but I don't think it matters here as we parallelize over columns, not over elements
POOL.install(|| {
self.columns
.par_iter()
.map(|s| Ok(Cow::Borrowed(s)))
.try_reduce_with(|l, r| max_fn(&l, &r).map(Cow::Owned))
// we can unwrap the option, because we are certain there is a column
// we started this operation on 3 columns
.unwrap()
.map(|cow| Some(cow.into_owned()))
})
},
}
}
/// Sum all values horizontally across columns.
pub fn sum_horizontal(&self, null_strategy: NullStrategy) -> PolarsResult<Option<Series>> {
let apply_null_strategy =
|s: Series, null_strategy: NullStrategy| -> PolarsResult<Series> {
if let NullStrategy::Ignore = null_strategy {
// if has nulls
if s.null_count() > 0 {
return s.fill_null(FillNullStrategy::Zero);
}
}
Ok(s)
};
let sum_fn =
|acc: Series, s: Series, null_strategy: NullStrategy| -> PolarsResult<Series> {
let acc: Series = apply_null_strategy(acc, null_strategy)?;
let s = apply_null_strategy(s, null_strategy)?;
// This will do owned arithmetic and can be mutable
std::ops::Add::add(acc, s)
};
let non_null_cols = self
.materialized_column_iter()
.filter(|x| x.dtype() != &DataType::Null)
.collect::<Vec<_>>();
match non_null_cols.len() {
0 => {
if self.columns.is_empty() {
Ok(None)
} else {
// all columns are null dtype, so result is null dtype
Ok(Some(self.columns[0].as_materialized_series().clone()))
}
},
1 => Ok(Some(apply_null_strategy(
if non_null_cols[0].dtype() == &DataType::Boolean {
non_null_cols[0].cast(&DataType::UInt32)?
} else {
non_null_cols[0].clone()
},
null_strategy,
)?)),
2 => sum_fn(
non_null_cols[0].clone(),
non_null_cols[1].clone(),
null_strategy,
)
.map(Some),
_ => {
// the try_reduce_with is a bit slower in parallelism,
// but I don't think it matters here as we parallelize over columns, not over elements
let out = POOL.install(|| {
non_null_cols
.into_par_iter()
.cloned()
.map(Ok)
.try_reduce_with(|l, r| sum_fn(l, r, null_strategy))
// We can unwrap because we started with at least 3 columns, so we always get a Some
.unwrap()
});
out.map(Some)
},
}
}
/// Compute the mean of all numeric values horizontally across columns.
pub fn mean_horizontal(&self, null_strategy: NullStrategy) -> PolarsResult<Option<Series>> {
let (numeric_columns, non_numeric_columns): (Vec<_>, Vec<_>) =
self.columns.iter().partition(|s| {
let dtype = s.dtype();
dtype.is_numeric() || dtype.is_decimal() || dtype.is_bool() || dtype.is_null()
});
if !non_numeric_columns.is_empty() {
let col = non_numeric_columns.first().cloned();
polars_bail!(
InvalidOperation: "'horizontal_mean' expects numeric expressions, found {:?} (dtype={})",
col.unwrap().name(),
col.unwrap().dtype(),
);
}
let columns = numeric_columns.into_iter().cloned().collect::<Vec<_>>();
match columns.len() {
0 => Ok(None),
1 => Ok(Some(match columns[0].dtype() {
dt if dt != &DataType::Float32 && !dt.is_decimal() => columns[0]
.as_materialized_series()
.cast(&DataType::Float64)?,
_ => columns[0].as_materialized_series().clone(),
})),
_ => {
let numeric_df = unsafe { DataFrame::_new_no_checks_impl(self.height(), columns) };
let sum = || numeric_df.sum_horizontal(null_strategy);
let null_count = || {
numeric_df
.par_materialized_column_iter()
.map(|s| {
s.is_null()
.cast_with_options(&DataType::UInt32, CastOptions::NonStrict)
})
.reduce_with(|l, r| {
let l = l?;
let r = r?;
let result = std::ops::Add::add(&l, &r)?;
PolarsResult::Ok(result)
})
// we can unwrap the option, because we are certain there is a column
// we started this operation on 2 columns
.unwrap()
};
let (sum, null_count) = POOL.install(|| rayon::join(sum, null_count));
let sum = sum?;
let null_count = null_count?;
// value lengths: len - null_count
let value_length: UInt32Chunked =
(numeric_df.width().sub(&null_count)).u32().unwrap().clone();
// make sure that we do not divide by zero
// by replacing with None
let value_length = value_length
.set(&value_length.equal(0), None)?
.into_series()
.cast(&DataType::Float64)?;
sum.map(|sum| std::ops::Div::div(&sum, &value_length))
.transpose()
},
}
}
/// Pipe different functions/ closure operations that work on a DataFrame together.
pub fn pipe<F, B>(self, f: F) -> PolarsResult<B>
where
F: Fn(DataFrame) -> PolarsResult<B>,
{
f(self)
}
/// Pipe different functions/ closure operations that work on a DataFrame together.
pub fn pipe_mut<F, B>(&mut self, f: F) -> PolarsResult<B>
where
F: Fn(&mut DataFrame) -> PolarsResult<B>,
{
f(self)
}
/// Pipe different functions/ closure operations that work on a DataFrame together.
pub fn pipe_with_args<F, B, Args>(self, f: F, args: Args) -> PolarsResult<B>
where
F: Fn(DataFrame, Args) -> PolarsResult<B>,
{
f(self, args)
}
/// Drop duplicate rows from a [`DataFrame`].
/// *This fails when there is a column of type List in DataFrame*
///
/// Stable means that the order is maintained. This has a higher cost than an unstable distinct.
///
/// # Example
///
/// ```no_run
/// # use polars_core::prelude::*;
/// let df = df! {
/// "flt" => [1., 1., 2., 2., 3., 3.],
/// "int" => [1, 1, 2, 2, 3, 3, ],
/// "str" => ["a", "a", "b", "b", "c", "c"]
/// }?;
///
/// println!("{}", df.unique_stable(None, UniqueKeepStrategy::First, None)?);
/// # Ok::<(), PolarsError>(())
/// ```
/// Returns
///
/// ```text
/// +-----+-----+-----+
/// | flt | int | str |
/// | --- | --- | --- |
/// | f64 | i32 | str |
/// +=====+=====+=====+
/// | 1 | 1 | "a" |
/// +-----+-----+-----+
/// | 2 | 2 | "b" |
/// +-----+-----+-----+
/// | 3 | 3 | "c" |
/// +-----+-----+-----+
/// ```
#[cfg(feature = "algorithm_group_by")]
pub fn unique_stable(
&self,
subset: Option<&[String]>,
keep: UniqueKeepStrategy,
slice: Option<(i64, usize)>,
) -> PolarsResult<DataFrame> {
self.unique_impl(
true,
subset.map(|v| v.iter().map(|x| PlSmallStr::from_str(x.as_str())).collect()),
keep,
slice,
)
}
/// Unstable distinct. See [`DataFrame::unique_stable`].
#[cfg(feature = "algorithm_group_by")]
pub fn unique<I, S>(
&self,
subset: Option<&[String]>,
keep: UniqueKeepStrategy,
slice: Option<(i64, usize)>,
) -> PolarsResult<DataFrame> {
self.unique_impl(
false,
subset.map(|v| v.iter().map(|x| PlSmallStr::from_str(x.as_str())).collect()),
keep,
slice,
)
}
#[cfg(feature = "algorithm_group_by")]
pub fn unique_impl(
&self,
maintain_order: bool,
subset: Option<Vec<PlSmallStr>>,
keep: UniqueKeepStrategy,
slice: Option<(i64, usize)>,
) -> PolarsResult<Self> {
let names = subset.unwrap_or_else(|| self.get_column_names_owned());
let mut df = self.clone();
// take on multiple chunks is terrible
df.as_single_chunk_par();
let columns = match (keep, maintain_order) {
(UniqueKeepStrategy::First | UniqueKeepStrategy::Any, true) => {
let gb = df.group_by_stable(names)?;
let groups = gb.get_groups();
let (offset, len) = slice.unwrap_or((0, groups.len()));
let groups = groups.slice(offset, len);
df._apply_columns_par(&|s| unsafe { s.agg_first(&groups) })
},
(UniqueKeepStrategy::Last, true) => {
// maintain order by last values, so the sorted groups are not correct as they
// are sorted by the first value
let gb = df.group_by(names)?;
let groups = gb.get_groups();
let func = |g: GroupsIndicator| match g {
GroupsIndicator::Idx((_first, idx)) => idx[idx.len() - 1],
GroupsIndicator::Slice([first, len]) => first + len - 1,
};
let last_idx: NoNull<IdxCa> = match slice {
None => groups.iter().map(func).collect(),
Some((offset, len)) => {
let (offset, len) = slice_offsets(offset, len, groups.len());
groups.iter().skip(offset).take(len).map(func).collect()
},
};
let last_idx = last_idx.sort(false);
return Ok(unsafe { df.take_unchecked(&last_idx) });
},
(UniqueKeepStrategy::First | UniqueKeepStrategy::Any, false) => {
let gb = df.group_by(names)?;
let groups = gb.get_groups();
let (offset, len) = slice.unwrap_or((0, groups.len()));
let groups = groups.slice(offset, len);
df._apply_columns_par(&|s| unsafe { s.agg_first(&groups) })
},
(UniqueKeepStrategy::Last, false) => {
let gb = df.group_by(names)?;
let groups = gb.get_groups();
let (offset, len) = slice.unwrap_or((0, groups.len()));
let groups = groups.slice(offset, len);
df._apply_columns_par(&|s| unsafe { s.agg_last(&groups) })
},
(UniqueKeepStrategy::None, _) => {
let df_part = df.select(names)?;
let mask = df_part.is_unique()?;
let mask = match slice {
None => mask,
Some((offset, len)) => mask.slice(offset, len),
};
return df.filter(&mask);
},
};
let height = Self::infer_height(&columns);
Ok(unsafe { DataFrame::new_no_checks(height, columns) })
}
/// Get a mask of all the unique rows in the [`DataFrame`].
///
/// # Example
///
/// ```no_run
/// # use polars_core::prelude::*;
/// let df: DataFrame = df!("Company" => ["Apple", "Microsoft"],
/// "ISIN" => ["US0378331005", "US5949181045"])?;
/// let ca: ChunkedArray<BooleanType> = df.is_unique()?;
///
/// assert!(ca.all());
/// # Ok::<(), PolarsError>(())
/// ```
#[cfg(feature = "algorithm_group_by")]
pub fn is_unique(&self) -> PolarsResult<BooleanChunked> {
let gb = self.group_by(self.get_column_names_owned())?;
let groups = gb.take_groups();
Ok(is_unique_helper(
groups,
self.height() as IdxSize,
true,
false,
))
}
/// Get a mask of all the duplicated rows in the [`DataFrame`].
///
/// # Example
///
/// ```no_run
/// # use polars_core::prelude::*;
/// let df: DataFrame = df!("Company" => ["Alphabet", "Alphabet"],
/// "ISIN" => ["US02079K3059", "US02079K1079"])?;
/// let ca: ChunkedArray<BooleanType> = df.is_duplicated()?;
///
/// assert!(!ca.all());
/// # Ok::<(), PolarsError>(())
/// ```
#[cfg(feature = "algorithm_group_by")]
pub fn is_duplicated(&self) -> PolarsResult<BooleanChunked> {
let gb = self.group_by(self.get_column_names_owned())?;
let groups = gb.take_groups();
Ok(is_unique_helper(
groups,
self.height() as IdxSize,
false,
true,
))
}
/// Create a new [`DataFrame`] that shows the null counts per column.
#[must_use]
pub fn null_count(&self) -> Self {
let cols = self
.columns
.iter()
.map(|c| Column::new(c.name().clone(), [c.null_count() as IdxSize]))
.collect();
unsafe { Self::new_no_checks(1, cols) }
}
/// Hash and combine the row values
#[cfg(feature = "row_hash")]
pub fn hash_rows(
&mut self,
hasher_builder: Option<PlRandomState>,
) -> PolarsResult<UInt64Chunked> {
let dfs = split_df(self, POOL.current_num_threads(), false);
let (cas, _) = _df_rows_to_hashes_threaded_vertical(&dfs, hasher_builder)?;
let mut iter = cas.into_iter();
let mut acc_ca = iter.next().unwrap();
for ca in iter {
acc_ca.append(&ca)?;
}
Ok(acc_ca.rechunk())
}
/// Get the supertype of the columns in this DataFrame
pub fn get_supertype(&self) -> Option<PolarsResult<DataType>> {
self.columns
.iter()
.map(|s| Ok(s.dtype().clone()))
.reduce(|acc, b| try_get_supertype(&acc?, &b.unwrap()))
}
/// Take by index values given by the slice `idx`.
/// # Warning
/// Be careful with allowing threads when calling this in a large hot loop
/// every thread split may be on rayon stack and lead to SO
#[doc(hidden)]
pub unsafe fn _take_unchecked_slice(&self, idx: &[IdxSize], allow_threads: bool) -> Self {
self._take_unchecked_slice_sorted(idx, allow_threads, IsSorted::Not)
}
/// Take by index values given by the slice `idx`. Use this over `_take_unchecked_slice`
/// if the index value in `idx` are sorted. This will maintain sorted flags.
///
/// # Warning
/// Be careful with allowing threads when calling this in a large hot loop
/// every thread split may be on rayon stack and lead to SO
#[doc(hidden)]
pub unsafe fn _take_unchecked_slice_sorted(
&self,
idx: &[IdxSize],
allow_threads: bool,
sorted: IsSorted,
) -> Self {
#[cfg(debug_assertions)]
{
if idx.len() > 2 {
match sorted {
IsSorted::Ascending => {
assert!(idx[0] <= idx[idx.len() - 1]);
},
IsSorted::Descending => {
assert!(idx[0] >= idx[idx.len() - 1]);
},
_ => {},
}
}
}
let mut ca = IdxCa::mmap_slice(PlSmallStr::EMPTY, idx);
ca.set_sorted_flag(sorted);
self.take_unchecked_impl(&ca, allow_threads)
}
#[cfg(all(feature = "partition_by", feature = "algorithm_group_by"))]
#[doc(hidden)]
pub fn _partition_by_impl(
&self,
cols: &[PlSmallStr],
stable: bool,
include_key: bool,
) -> PolarsResult<Vec<DataFrame>> {
let groups = if stable {
self.group_by_stable(cols.iter().cloned())?.take_groups()
} else {
self.group_by(cols.iter().cloned())?.take_groups()
};
// drop key columns prior to calculation if requested
let df = if include_key {
self.clone()
} else {
self.drop_many(cols.iter().cloned())
};
// don't parallelize this
// there is a lot of parallelization in take and this may easily SO
POOL.install(|| {
match groups {
GroupsProxy::Idx(idx) => {
// Rechunk as the gather may rechunk for every group #17562.
let mut df = df.clone();
df.as_single_chunk_par();
Ok(idx
.into_par_iter()
.map(|(_, group)| {
// groups are in bounds
unsafe {
df._take_unchecked_slice_sorted(&group, false, IsSorted::Ascending)
}
})
.collect())
},
GroupsProxy::Slice { groups, .. } => Ok(groups
.into_par_iter()
.map(|[first, len]| df.slice(first as i64, len as usize))
.collect()),
}
})
}
/// Split into multiple DataFrames partitioned by groups
#[cfg(feature = "partition_by")]
pub fn partition_by<I, S>(&self, cols: I, include_key: bool) -> PolarsResult<Vec<DataFrame>>
where
I: IntoIterator<Item = S>,
S: Into<PlSmallStr>,
{
let cols = cols
.into_iter()
.map(Into::into)
.collect::<Vec<PlSmallStr>>();
self._partition_by_impl(cols.as_slice(), false, include_key)
}
/// Split into multiple DataFrames partitioned by groups
/// Order of the groups are maintained.
#[cfg(feature = "partition_by")]
pub fn partition_by_stable<I, S>(
&self,
cols: I,
include_key: bool,
) -> PolarsResult<Vec<DataFrame>>
where
I: IntoIterator<Item = S>,
S: Into<PlSmallStr>,
{
let cols = cols
.into_iter()
.map(Into::into)
.collect::<Vec<PlSmallStr>>();
self._partition_by_impl(cols.as_slice(), true, include_key)
}
/// Unnest the given `Struct` columns. This means that the fields of the `Struct` type will be
/// inserted as columns.
#[cfg(feature = "dtype-struct")]
pub fn unnest<I: IntoVec<PlSmallStr>>(&self, cols: I) -> PolarsResult<DataFrame> {
let cols = cols.into_vec();
self.unnest_impl(cols.into_iter().collect())
}
#[cfg(feature = "dtype-struct")]
fn unnest_impl(&self, cols: PlHashSet<PlSmallStr>) -> PolarsResult<DataFrame> {
let mut new_cols = Vec::with_capacity(std::cmp::min(self.width() * 2, self.width() + 128));
let mut count = 0;
for s in &self.columns {
if cols.contains(s.name()) {
let ca = s.struct_()?.clone();
new_cols.extend(ca.fields_as_series().into_iter().map(Column::from));
count += 1;
} else {
new_cols.push(s.clone())
}
}
if count != cols.len() {
// one or more columns not found
// the code below will return an error with the missing name
let schema = self.schema();
for col in cols {
let _ = schema
.get(col.as_str())
.ok_or_else(|| polars_err!(col_not_found = col))?;
}
}
DataFrame::new(new_cols)
}
pub(crate) fn infer_height(cols: &[Column]) -> usize {
cols.first().map_or(0, Column::len)
}
pub fn append_record_batch(&mut self, rb: RecordBatchT<ArrayRef>) -> PolarsResult<()> {
polars_ensure!(
rb.arrays().len() == self.width(),
InvalidOperation: "attempt to extend dataframe of width {} with record batch of width {}",
self.width(),
rb.arrays().len(),
);
if rb.height() == 0 {
return Ok(());
}
// SAFETY:
// - we don't adjust the names of the columns
// - each column gets appended the same number of rows, which is an invariant of
// record_batch.
let columns = unsafe { self.get_columns_mut() };
for (col, arr) in columns.iter_mut().zip(rb.into_arrays()) {
let arr_series = Series::from_arrow_chunks(PlSmallStr::EMPTY, vec![arr])?.into_column();
col.append(&arr_series)?;
}
Ok(())
}
}
pub struct RecordBatchIter<'a> {
columns: &'a Vec<Column>,
idx: usize,
n_chunks: usize,
compat_level: CompatLevel,
parallel: bool,
}
impl Iterator for RecordBatchIter<'_> {
type Item = RecordBatch;
fn next(&mut self) -> Option<Self::Item> {
if self.idx >= self.n_chunks {
return None;
}
// Create a batch of the columns with the same chunk no.
let batch_cols: Vec<ArrayRef> = if self.parallel {
let iter = self
.columns
.par_iter()
.map(Column::as_materialized_series)
.map(|s| s.to_arrow(self.idx, self.compat_level));
POOL.install(|| iter.collect())
} else {
self.columns
.iter()
.map(Column::as_materialized_series)
.map(|s| s.to_arrow(self.idx, self.compat_level))
.collect()
};
self.idx += 1;
let length = batch_cols.first().map_or(0, |arr| arr.len());
Some(RecordBatch::new(length, batch_cols))
}
fn size_hint(&self) -> (usize, Option<usize>) {
let n = self.n_chunks - self.idx;
(n, Some(n))
}
}
pub struct PhysRecordBatchIter<'a> {
iters: Vec<std::slice::Iter<'a, ArrayRef>>,
}
impl Iterator for PhysRecordBatchIter<'_> {
type Item = RecordBatch;
fn next(&mut self) -> Option<Self::Item> {
self.iters
.iter_mut()
.map(|phys_iter| phys_iter.next().cloned())
.collect::<Option<Vec<_>>>()
.map(|arrs| {
let length = arrs.first().map_or(0, |arr| arr.len());
RecordBatch::new(length, arrs)
})
}
fn size_hint(&self) -> (usize, Option<usize>) {
if let Some(iter) = self.iters.first() {
iter.size_hint()
} else {
(0, None)
}
}
}
impl Default for DataFrame {
fn default() -> Self {
DataFrame::empty()
}
}
impl From<DataFrame> for Vec<Column> {
fn from(df: DataFrame) -> Self {
df.columns
}
}
// utility to test if we can vstack/extend the columns
fn ensure_can_extend(left: &Column, right: &Column) -> PolarsResult<()> {
polars_ensure!(
left.name() == right.name(),
ShapeMismatch: "unable to vstack, column names don't match: {:?} and {:?}",
left.name(), right.name(),
);
Ok(())
}
#[cfg(test)]
mod test {
use super::*;
fn create_frame() -> DataFrame {
let s0 = Column::new("days".into(), [0, 1, 2].as_ref());
let s1 = Column::new("temp".into(), [22.1, 19.9, 7.].as_ref());
DataFrame::new(vec![s0, s1]).unwrap()
}
#[test]
#[cfg_attr(miri, ignore)]
fn test_recordbatch_iterator() {
let df = df!(
"foo" => [1, 2, 3, 4, 5]
)
.unwrap();
let mut iter = df.iter_chunks(CompatLevel::newest(), false);
assert_eq!(5, iter.next().unwrap().len());
assert!(iter.next().is_none());
}
#[test]
#[cfg_attr(miri, ignore)]
fn test_select() {
let df = create_frame();
assert_eq!(
df.column("days")
.unwrap()
.as_series()
.unwrap()
.equal(1)
.unwrap()
.sum(),
Some(1)
);
}
#[test]
#[cfg_attr(miri, ignore)]
fn test_filter_broadcast_on_string_col() {
let col_name = "some_col";
let v = vec!["test".to_string()];
let s0 = Column::new(PlSmallStr::from_str(col_name), v);
let mut df = DataFrame::new(vec![s0]).unwrap();
df = df
.filter(
&df.column(col_name)
.unwrap()
.as_materialized_series()
.equal("")
.unwrap(),
)
.unwrap();
assert_eq!(
df.column(col_name)
.unwrap()
.as_materialized_series()
.n_chunks(),
1
);
}
#[test]
#[cfg_attr(miri, ignore)]
fn test_filter_broadcast_on_list_col() {
let s1 = Series::new(PlSmallStr::EMPTY, [true, false, true]);
let ll: ListChunked = [&s1].iter().copied().collect();
let mask = BooleanChunked::from_slice(PlSmallStr::EMPTY, &[false]);
let new = ll.filter(&mask).unwrap();
assert_eq!(new.chunks.len(), 1);
assert_eq!(new.len(), 0);
}
#[test]
fn slice() {
let df = create_frame();
let sliced_df = df.slice(0, 2);
assert_eq!(sliced_df.shape(), (2, 2));
}
#[test]
fn rechunk_false() {
let df = create_frame();
assert!(!df.should_rechunk())
}
#[test]
fn rechunk_true() -> PolarsResult<()> {
let mut base = df!(
"a" => [1, 2, 3],
"b" => [1, 2, 3]
)?;
// Create a series with multiple chunks
let mut s = Series::new("foo".into(), 0..2);
let s2 = Series::new("bar".into(), 0..1);
s.append(&s2)?;
// Append series to frame
let out = base.with_column(s)?;
// Now we should rechunk
assert!(out.should_rechunk());
Ok(())
}
#[test]
fn test_duplicate_column() {
let mut df = df! {
"foo" => [1, 2, 3]
}
.unwrap();
// check if column is replaced
assert!(df
.with_column(Series::new("foo".into(), &[1, 2, 3]))
.is_ok());
assert!(df
.with_column(Series::new("bar".into(), &[1, 2, 3]))
.is_ok());
assert!(df.column("bar").is_ok())
}
#[test]
#[cfg_attr(miri, ignore)]
fn distinct() {
let df = df! {
"flt" => [1., 1., 2., 2., 3., 3.],
"int" => [1, 1, 2, 2, 3, 3, ],
"str" => ["a", "a", "b", "b", "c", "c"]
}
.unwrap();
let df = df
.unique_stable(None, UniqueKeepStrategy::First, None)
.unwrap()
.sort(["flt"], SortMultipleOptions::default())
.unwrap();
let valid = df! {
"flt" => [1., 2., 3.],
"int" => [1, 2, 3],
"str" => ["a", "b", "c"]
}
.unwrap();
assert!(df.equals(&valid));
}
#[test]
fn test_vstack() {
// check that it does not accidentally rechunks
let mut df = df! {
"flt" => [1., 1., 2., 2., 3., 3.],
"int" => [1, 1, 2, 2, 3, 3, ],
"str" => ["a", "a", "b", "b", "c", "c"]
}
.unwrap();
df.vstack_mut(&df.slice(0, 3)).unwrap();
assert_eq!(df.first_col_n_chunks(), 2)
}
#[test]
fn test_vstack_on_empty_dataframe() {
let mut df = DataFrame::empty();
let df_data = df! {
"flt" => [1., 1., 2., 2., 3., 3.],
"int" => [1, 1, 2, 2, 3, 3, ],
"str" => ["a", "a", "b", "b", "c", "c"]
}
.unwrap();
df.vstack_mut(&df_data).unwrap();
assert_eq!(df.height, 6)
}
#[test]
#[cfg(feature = "zip_with")]
#[cfg_attr(miri, ignore)]
fn test_horizontal_agg() {
let a = Column::new("a".into(), [1, 2, 6]);
let b = Column::new("b".into(), [Some(1), None, None]);
let c = Column::new("c".into(), [Some(4), None, Some(3)]);
let df = DataFrame::new(vec![a, b, c]).unwrap();
assert_eq!(
Vec::from(
df.mean_horizontal(NullStrategy::Ignore)
.unwrap()
.unwrap()
.f64()
.unwrap()
),
&[Some(2.0), Some(2.0), Some(4.5)]
);
assert_eq!(
Vec::from(
df.sum_horizontal(NullStrategy::Ignore)
.unwrap()
.unwrap()
.i32()
.unwrap()
),
&[Some(6), Some(2), Some(9)]
);
assert_eq!(
Vec::from(df.min_horizontal().unwrap().unwrap().i32().unwrap()),
&[Some(1), Some(2), Some(3)]
);
assert_eq!(
Vec::from(df.max_horizontal().unwrap().unwrap().i32().unwrap()),
&[Some(4), Some(2), Some(6)]
);
}
#[test]
fn test_replace_or_add() -> PolarsResult<()> {
let mut df = df!(
"a" => [1, 2, 3],
"b" => [1, 2, 3]
)?;
// check that the new column is "c" and not "bar".
df.replace_or_add("c".into(), Series::new("bar".into(), [1, 2, 3]))?;
assert_eq!(df.get_column_names(), &["a", "b", "c"]);
Ok(())
}
}