1#![allow(unsafe_op_in_unsafe_fn)]
2use crate::chunked_array::flags::StatisticsFlags;
4pub use crate::prelude::ChunkCompareEq;
5use crate::prelude::*;
6use crate::{HEAD_DEFAULT_LENGTH, TAIL_DEFAULT_LENGTH};
7
8macro_rules! invalid_operation_panic {
9 ($op:ident, $s:expr) => {
10 panic!(
11 "`{}` operation not supported for dtype `{}`",
12 stringify!($op),
13 $s._dtype()
14 )
15 };
16}
17
18pub mod amortized_iter;
19mod any_value;
20pub mod arithmetic;
21pub mod builder;
22#[cfg(feature = "dtype-categorical")]
23pub mod categorical_to_arrow;
24mod comparison;
25mod from;
26pub mod implementations;
27mod into;
28pub use into::ToArrowConverter;
29pub(crate) mod iterator;
30pub mod ops;
31#[cfg(feature = "proptest")]
32pub mod proptest;
33mod series_trait;
34
35use std::borrow::Cow;
36use std::hash::{Hash, Hasher};
37use std::ops::Deref;
38
39use arrow::compute::aggregate::estimated_bytes_size;
40use arrow::offset::Offsets;
41pub use from::*;
42pub use iterator::{SeriesIter, SeriesPhysIter};
43use num_traits::NumCast;
44use polars_error::feature_gated;
45use polars_utils::float::IsFloat;
46pub use series_trait::{IsSorted, *};
47
48use crate::POOL;
49use crate::chunked_array::cast::CastOptions;
50#[cfg(feature = "zip_with")]
51use crate::series::arithmetic::coerce_lhs_rhs;
52use crate::utils::{Wrap, handle_casting_failures, materialize_dyn_int};
53
54#[derive(Clone)]
152#[must_use]
153pub struct Series(pub Arc<dyn SeriesTrait>);
154
155impl PartialEq for Wrap<Series> {
156 fn eq(&self, other: &Self) -> bool {
157 self.0.equals_missing(other)
158 }
159}
160
161impl Eq for Wrap<Series> {}
162
163impl Hash for Wrap<Series> {
164 fn hash<H: Hasher>(&self, state: &mut H) {
165 let rs = PlSeedableRandomStateQuality::fixed();
166 let mut h = vec![];
167 if self.0.vec_hash(rs, &mut h).is_ok() {
168 let h = h.into_iter().fold(0, |a: u64, b| a.wrapping_add(b));
169 h.hash(state)
170 } else {
171 self.len().hash(state);
172 self.null_count().hash(state);
173 self.dtype().hash(state);
174 }
175 }
176}
177
178impl Series {
179 pub fn new_empty(name: PlSmallStr, dtype: &DataType) -> Series {
181 Series::full_null(name, 0, dtype)
182 }
183
184 pub fn clear(&self) -> Series {
185 if self.is_empty() {
186 self.clone()
187 } else {
188 match self.dtype() {
189 #[cfg(feature = "object")]
190 DataType::Object(_) => self
191 .take(&ChunkedArray::<IdxType>::new_vec(PlSmallStr::EMPTY, vec![]))
192 .unwrap(),
193 dt => Series::new_empty(self.name().clone(), dt),
194 }
195 }
196 }
197
198 #[doc(hidden)]
199 pub fn _get_inner_mut(&mut self) -> &mut dyn SeriesTrait {
200 if Arc::weak_count(&self.0) + Arc::strong_count(&self.0) != 1 {
201 self.0 = self.0.clone_inner();
202 }
203 Arc::get_mut(&mut self.0).expect("implementation error")
204 }
205
206 pub fn take_inner<T: PolarsPhysicalType>(self) -> ChunkedArray<T> {
208 let arc_any = self.0.as_arc_any();
209 let downcast = arc_any
210 .downcast::<implementations::SeriesWrap<ChunkedArray<T>>>()
211 .unwrap();
212
213 match Arc::try_unwrap(downcast) {
214 Ok(ca) => ca.0,
215 Err(ca) => ca.as_ref().as_ref().clone(),
216 }
217 }
218
219 pub unsafe fn chunks_mut(&mut self) -> &mut Vec<ArrayRef> {
223 #[allow(unused_mut)]
224 let mut ca = self._get_inner_mut();
225 ca.chunks_mut()
226 }
227
228 pub fn into_chunks(mut self) -> Vec<ArrayRef> {
229 let ca = self._get_inner_mut();
230 let chunks = std::mem::take(unsafe { ca.chunks_mut() });
231 ca.compute_len();
232 chunks
233 }
234
235 pub fn select_chunk(&self, i: usize) -> Self {
237 let mut new = self.clear();
238 let mut flags = self.get_flags();
239
240 use StatisticsFlags as F;
241 flags &= F::IS_SORTED_ANY | F::CAN_FAST_EXPLODE_LIST;
242
243 let mut_new = new._get_inner_mut();
245 let chunks = unsafe { mut_new.chunks_mut() };
246 let chunk = self.chunks()[i].clone();
247 chunks.clear();
248 chunks.push(chunk);
249 mut_new.compute_len();
250 mut_new._set_flags(flags);
251 new
252 }
253
254 pub fn is_sorted_flag(&self) -> IsSorted {
255 if self.len() <= 1 {
256 return IsSorted::Ascending;
257 }
258 self.get_flags().is_sorted()
259 }
260
261 pub fn set_sorted_flag(&mut self, sorted: IsSorted) {
262 let mut flags = self.get_flags();
263 flags.set_sorted(sorted);
264 self.set_flags(flags);
265 }
266
267 pub(crate) fn clear_flags(&mut self) {
268 self.set_flags(StatisticsFlags::empty());
269 }
270 pub fn get_flags(&self) -> StatisticsFlags {
271 self.0._get_flags()
272 }
273
274 pub(crate) fn set_flags(&mut self, flags: StatisticsFlags) {
275 self._get_inner_mut()._set_flags(flags)
276 }
277
278 pub fn into_frame(self) -> DataFrame {
279 unsafe { DataFrame::new_no_checks(self.len(), vec![self.into()]) }
281 }
282
283 pub fn rename(&mut self, name: PlSmallStr) -> &mut Series {
285 self._get_inner_mut().rename(name);
286 self
287 }
288
289 pub fn with_name(mut self, name: PlSmallStr) -> Series {
291 self.rename(name);
292 self
293 }
294
295 pub fn from_arrow_chunks(name: PlSmallStr, arrays: Vec<ArrayRef>) -> PolarsResult<Series> {
296 Self::try_from((name, arrays))
297 }
298
299 pub fn from_arrow(name: PlSmallStr, array: ArrayRef) -> PolarsResult<Series> {
300 Self::try_from((name, array))
301 }
302
303 pub fn shrink_to_fit(&mut self) {
305 self._get_inner_mut().shrink_to_fit()
306 }
307
308 pub fn append(&mut self, other: &Series) -> PolarsResult<&mut Self> {
312 let must_cast = other.dtype().matches_schema_type(self.dtype())?;
313 if must_cast {
314 let other = other.cast(self.dtype())?;
315 self.append_owned(other)?;
316 } else {
317 self._get_inner_mut().append(other)?;
318 }
319 Ok(self)
320 }
321
322 pub fn append_owned(&mut self, other: Series) -> PolarsResult<&mut Self> {
326 let must_cast = other.dtype().matches_schema_type(self.dtype())?;
327 if must_cast {
328 let other = other.cast(self.dtype())?;
329 self._get_inner_mut().append_owned(other)?;
330 } else {
331 self._get_inner_mut().append_owned(other)?;
332 }
333 Ok(self)
334 }
335
336 pub fn compute_len(&mut self) {
338 self._get_inner_mut().compute_len()
339 }
340
341 pub fn extend(&mut self, other: &Series) -> PolarsResult<&mut Self> {
345 let must_cast = other.dtype().matches_schema_type(self.dtype())?;
346 if must_cast {
347 let other = other.cast(self.dtype())?;
348 self._get_inner_mut().extend(&other)?;
349 } else {
350 self._get_inner_mut().extend(other)?;
351 }
352 Ok(self)
353 }
354
355 pub fn sort(&self, sort_options: SortOptions) -> PolarsResult<Self> {
371 self.sort_with(sort_options)
372 }
373
374 pub fn as_single_ptr(&mut self) -> PolarsResult<usize> {
376 self._get_inner_mut().as_single_ptr()
377 }
378
379 pub fn cast(&self, dtype: &DataType) -> PolarsResult<Self> {
380 self.cast_with_options(dtype, CastOptions::NonStrict)
381 }
382
383 pub fn cast_with_options(&self, dtype: &DataType, options: CastOptions) -> PolarsResult<Self> {
385 let slf = self
386 .trim_lists_to_normalized_offsets()
387 .map_or(Cow::Borrowed(self), Cow::Owned);
388 let slf = slf.propagate_nulls().map_or(slf, Cow::Owned);
389
390 use DataType as D;
391 let do_clone = match dtype {
392 D::Unknown(UnknownKind::Any) => true,
393 D::Unknown(UnknownKind::Int(_)) if slf.dtype().is_integer() => true,
394 D::Unknown(UnknownKind::Float) if slf.dtype().is_float() => true,
395 D::Unknown(UnknownKind::Str)
396 if slf.dtype().is_string() | slf.dtype().is_categorical() =>
397 {
398 true
399 },
400 dt if dt.is_primitive() && dt == slf.dtype() => true,
401 _ => false,
402 };
403
404 if do_clone {
405 return Ok(slf.into_owned());
406 }
407
408 pub fn cast_dtype(dtype: &DataType) -> Option<DataType> {
409 match dtype {
410 D::Unknown(UnknownKind::Int(v)) => Some(materialize_dyn_int(*v).dtype()),
411 D::Unknown(UnknownKind::Float) => Some(DataType::Float64),
412 D::Unknown(UnknownKind::Str) => Some(DataType::String),
413 D::List(inner) => cast_dtype(inner.as_ref()).map(Box::new).map(D::List),
415 #[cfg(feature = "dtype-struct")]
416 D::Struct(fields) => {
417 let mut field_iter = fields.iter().enumerate();
420 let mut new_fields = loop {
421 let (i, field) = field_iter.next()?;
422
423 if let Some(dtype) = cast_dtype(&field.dtype) {
424 let mut new_fields = Vec::with_capacity(fields.len());
425 new_fields.extend(fields.iter().take(i).cloned());
426 new_fields.push(Field {
427 name: field.name.clone(),
428 dtype,
429 });
430 break new_fields;
431 }
432 };
433
434 new_fields.extend(fields.iter().skip(new_fields.len()).cloned().map(|field| {
435 let dtype = cast_dtype(&field.dtype).unwrap_or(field.dtype);
436 Field {
437 name: field.name,
438 dtype,
439 }
440 }));
441
442 Some(D::Struct(new_fields))
443 },
444 _ => None,
445 }
446 }
447
448 let mut casted = cast_dtype(dtype);
449 if dtype.is_list() && dtype.inner_dtype().is_some_and(|dt| dt.is_null()) {
450 if let Some(from_inner_dtype) = slf.dtype().inner_dtype() {
451 casted = Some(DataType::List(Box::new(from_inner_dtype.clone())));
452 }
453 }
454 let dtype = match casted {
455 None => dtype,
456 Some(ref dtype) => dtype,
457 };
458
459 let len = slf.len();
461 if slf.null_count() == len {
462 return Ok(Series::full_null(slf.name().clone(), len, dtype));
463 }
464
465 let new_options = match options {
466 CastOptions::Strict => CastOptions::NonStrict,
468 opt => opt,
469 };
470
471 let out = slf.0.cast(dtype, new_options)?;
472 if options.is_strict() {
473 handle_casting_failures(slf.as_ref(), &out)?;
474 }
475 Ok(out)
476 }
477
478 pub unsafe fn cast_unchecked(&self, dtype: &DataType) -> PolarsResult<Self> {
484 match self.dtype() {
485 #[cfg(feature = "dtype-struct")]
486 DataType::Struct(_) => self.struct_().unwrap().cast_unchecked(dtype),
487 DataType::List(_) => self.list().unwrap().cast_unchecked(dtype),
488 dt if dt.is_primitive_numeric() => {
489 with_match_physical_numeric_polars_type!(dt, |$T| {
490 let ca: &ChunkedArray<$T> = self.as_ref().as_ref().as_ref();
491 ca.cast_unchecked(dtype)
492 })
493 },
494 DataType::Binary => self.binary().unwrap().cast_unchecked(dtype),
495 _ => self.cast_with_options(dtype, CastOptions::Overflowing),
496 }
497 }
498
499 pub unsafe fn from_physical_unchecked(&self, dtype: &DataType) -> PolarsResult<Self> {
505 debug_assert!(!self.dtype().is_logical(), "{:?}", self.dtype());
506
507 if self.dtype() == dtype {
508 return Ok(self.clone());
509 }
510
511 use DataType as D;
512 match (self.dtype(), dtype) {
513 #[cfg(feature = "dtype-decimal")]
514 (D::Int128, D::Decimal(precision, scale)) => {
515 let ca = self.i128().unwrap();
516 Ok(ca
517 .clone()
518 .into_decimal_unchecked(*precision, *scale)
519 .into_series())
520 },
521
522 #[cfg(feature = "dtype-categorical")]
523 (phys, D::Categorical(cats, _)) if &cats.physical().dtype() == phys => {
524 with_match_categorical_physical_type!(cats.physical(), |$C| {
525 type CA = ChunkedArray<<$C as PolarsCategoricalType>::PolarsPhysical>;
526 let ca = self.as_ref().as_any().downcast_ref::<CA>().unwrap();
527 Ok(CategoricalChunked::<$C>::from_cats_and_dtype_unchecked(
528 ca.clone(),
529 dtype.clone(),
530 )
531 .into_series())
532 })
533 },
534 #[cfg(feature = "dtype-categorical")]
535 (phys, D::Enum(fcats, _)) if &fcats.physical().dtype() == phys => {
536 with_match_categorical_physical_type!(fcats.physical(), |$C| {
537 type CA = ChunkedArray<<$C as PolarsCategoricalType>::PolarsPhysical>;
538 let ca = self.as_ref().as_any().downcast_ref::<CA>().unwrap();
539 Ok(CategoricalChunked::<$C>::from_cats_and_dtype_unchecked(
540 ca.clone(),
541 dtype.clone(),
542 )
543 .into_series())
544 })
545 },
546
547 (D::Int32, D::Date) => feature_gated!("dtype-time", Ok(self.clone().into_date())),
548 (D::Int64, D::Datetime(tu, tz)) => feature_gated!(
549 "dtype-datetime",
550 Ok(self.clone().into_datetime(*tu, tz.clone()))
551 ),
552 (D::Int64, D::Duration(tu)) => {
553 feature_gated!("dtype-duration", Ok(self.clone().into_duration(*tu)))
554 },
555 (D::Int64, D::Time) => feature_gated!("dtype-time", Ok(self.clone().into_time())),
556
557 (D::List(_), D::List(to)) => unsafe {
558 self.list()
559 .unwrap()
560 .from_physical_unchecked(to.as_ref().clone())
561 .map(|ca| ca.into_series())
562 },
563 #[cfg(feature = "dtype-array")]
564 (D::Array(_, lw), D::Array(to, rw)) if lw == rw => unsafe {
565 self.array()
566 .unwrap()
567 .from_physical_unchecked(to.as_ref().clone())
568 .map(|ca| ca.into_series())
569 },
570 #[cfg(feature = "dtype-struct")]
571 (D::Struct(_), D::Struct(to)) => unsafe {
572 self.struct_()
573 .unwrap()
574 .from_physical_unchecked(to.as_slice())
575 .map(|ca| ca.into_series())
576 },
577
578 _ => panic!("invalid from_physical({dtype:?}) for {:?}", self.dtype()),
579 }
580 }
581
582 pub fn to_float(&self) -> PolarsResult<Series> {
584 match self.dtype() {
585 DataType::Float32 | DataType::Float64 => Ok(self.clone()),
586 _ => self.cast_with_options(&DataType::Float64, CastOptions::Overflowing),
587 }
588 }
589
590 pub fn sum<T>(&self) -> PolarsResult<T>
597 where
598 T: NumCast + IsFloat,
599 {
600 let sum = self.sum_reduce()?;
601 let sum = sum.value().extract().unwrap();
602 Ok(sum)
603 }
604
605 pub fn min<T>(&self) -> PolarsResult<Option<T>>
608 where
609 T: NumCast + IsFloat,
610 {
611 let min = self.min_reduce()?;
612 let min = min.value().extract::<T>();
613 Ok(min)
614 }
615
616 pub fn max<T>(&self) -> PolarsResult<Option<T>>
619 where
620 T: NumCast + IsFloat,
621 {
622 let max = self.max_reduce()?;
623 let max = max.value().extract::<T>();
624 Ok(max)
625 }
626
627 pub fn explode(&self, skip_empty: bool) -> PolarsResult<Series> {
629 match self.dtype() {
630 DataType::List(_) => self.list().unwrap().explode(skip_empty),
631 #[cfg(feature = "dtype-array")]
632 DataType::Array(_, _) => self.array().unwrap().explode(skip_empty),
633 _ => Ok(self.clone()),
634 }
635 }
636
637 pub fn is_nan(&self) -> PolarsResult<BooleanChunked> {
639 match self.dtype() {
640 DataType::Float32 => Ok(self.f32().unwrap().is_nan()),
641 DataType::Float64 => Ok(self.f64().unwrap().is_nan()),
642 DataType::Null => Ok(BooleanChunked::full_null(self.name().clone(), self.len())),
643 dt if dt.is_primitive_numeric() => {
644 let arr = BooleanArray::full(self.len(), false, ArrowDataType::Boolean)
645 .with_validity(self.rechunk_validity());
646 Ok(BooleanChunked::with_chunk(self.name().clone(), arr))
647 },
648 _ => polars_bail!(opq = is_nan, self.dtype()),
649 }
650 }
651
652 pub fn is_not_nan(&self) -> PolarsResult<BooleanChunked> {
654 match self.dtype() {
655 DataType::Float32 => Ok(self.f32().unwrap().is_not_nan()),
656 DataType::Float64 => Ok(self.f64().unwrap().is_not_nan()),
657 dt if dt.is_primitive_numeric() => {
658 let arr = BooleanArray::full(self.len(), true, ArrowDataType::Boolean)
659 .with_validity(self.rechunk_validity());
660 Ok(BooleanChunked::with_chunk(self.name().clone(), arr))
661 },
662 _ => polars_bail!(opq = is_not_nan, self.dtype()),
663 }
664 }
665
666 pub fn is_finite(&self) -> PolarsResult<BooleanChunked> {
668 match self.dtype() {
669 DataType::Float32 => Ok(self.f32().unwrap().is_finite()),
670 DataType::Float64 => Ok(self.f64().unwrap().is_finite()),
671 DataType::Null => Ok(BooleanChunked::full_null(self.name().clone(), self.len())),
672 dt if dt.is_primitive_numeric() => {
673 let arr = BooleanArray::full(self.len(), true, ArrowDataType::Boolean)
674 .with_validity(self.rechunk_validity());
675 Ok(BooleanChunked::with_chunk(self.name().clone(), arr))
676 },
677 _ => polars_bail!(opq = is_finite, self.dtype()),
678 }
679 }
680
681 pub fn is_infinite(&self) -> PolarsResult<BooleanChunked> {
683 match self.dtype() {
684 DataType::Float32 => Ok(self.f32().unwrap().is_infinite()),
685 DataType::Float64 => Ok(self.f64().unwrap().is_infinite()),
686 DataType::Null => Ok(BooleanChunked::full_null(self.name().clone(), self.len())),
687 dt if dt.is_primitive_numeric() => {
688 let arr = BooleanArray::full(self.len(), false, ArrowDataType::Boolean)
689 .with_validity(self.rechunk_validity());
690 Ok(BooleanChunked::with_chunk(self.name().clone(), arr))
691 },
692 _ => polars_bail!(opq = is_infinite, self.dtype()),
693 }
694 }
695
696 #[cfg(feature = "zip_with")]
700 pub fn zip_with(&self, mask: &BooleanChunked, other: &Series) -> PolarsResult<Series> {
701 let (lhs, rhs) = coerce_lhs_rhs(self, other)?;
702 lhs.zip_with_same_type(mask, rhs.as_ref())
703 }
704
705 pub fn to_physical_repr(&self) -> Cow<'_, Series> {
718 use DataType::*;
719 match self.dtype() {
720 #[cfg(feature = "dtype-date")]
723 Date => Cow::Owned(self.date().unwrap().phys.clone().into_series()),
724 #[cfg(feature = "dtype-datetime")]
725 Datetime(_, _) => Cow::Owned(self.datetime().unwrap().phys.clone().into_series()),
726 #[cfg(feature = "dtype-duration")]
727 Duration(_) => Cow::Owned(self.duration().unwrap().phys.clone().into_series()),
728 #[cfg(feature = "dtype-time")]
729 Time => Cow::Owned(self.time().unwrap().phys.clone().into_series()),
730 #[cfg(feature = "dtype-categorical")]
731 dt @ (Categorical(_, _) | Enum(_, _)) => {
732 with_match_categorical_physical_type!(dt.cat_physical().unwrap(), |$C| {
733 let ca = self.cat::<$C>().unwrap();
734 Cow::Owned(ca.physical().clone().into_series())
735 })
736 },
737 #[cfg(feature = "dtype-decimal")]
738 Decimal(_, _) => Cow::Owned(self.decimal().unwrap().phys.clone().into_series()),
739 List(_) => match self.list().unwrap().to_physical_repr() {
740 Cow::Borrowed(_) => Cow::Borrowed(self),
741 Cow::Owned(ca) => Cow::Owned(ca.into_series()),
742 },
743 #[cfg(feature = "dtype-array")]
744 Array(_, _) => match self.array().unwrap().to_physical_repr() {
745 Cow::Borrowed(_) => Cow::Borrowed(self),
746 Cow::Owned(ca) => Cow::Owned(ca.into_series()),
747 },
748 #[cfg(feature = "dtype-struct")]
749 Struct(_) => match self.struct_().unwrap().to_physical_repr() {
750 Cow::Borrowed(_) => Cow::Borrowed(self),
751 Cow::Owned(ca) => Cow::Owned(ca.into_series()),
752 },
753 _ => Cow::Borrowed(self),
754 }
755 }
756
757 pub fn gather_every(&self, n: usize, offset: usize) -> PolarsResult<Series> {
759 polars_ensure!(n > 0, ComputeError: "cannot perform gather every for `n=0`");
760 let idx = ((offset as IdxSize)..self.len() as IdxSize)
761 .step_by(n)
762 .collect_ca(PlSmallStr::EMPTY);
763 Ok(unsafe { self.take_unchecked(&idx) })
765 }
766
767 #[cfg(feature = "dot_product")]
768 pub fn dot(&self, other: &Series) -> PolarsResult<f64> {
769 std::ops::Mul::mul(self, other)?.sum::<f64>()
770 }
771
772 pub fn sum_reduce(&self) -> PolarsResult<Scalar> {
778 use DataType::*;
779 match self.dtype() {
780 Int8 | UInt8 | Int16 | UInt16 => self.cast(&Int64).unwrap().sum_reduce(),
781 _ => self.0.sum_reduce(),
782 }
783 }
784
785 pub fn mean_reduce(&self) -> PolarsResult<Scalar> {
788 self.0.mean_reduce()
789 }
790
791 pub fn product(&self) -> PolarsResult<Scalar> {
796 #[cfg(feature = "product")]
797 {
798 use DataType::*;
799 match self.dtype() {
800 Boolean => self.cast(&DataType::Int64).unwrap().product(),
801 Int8 | UInt8 | Int16 | UInt16 | Int32 | UInt32 => {
802 let s = self.cast(&Int64).unwrap();
803 s.product()
804 },
805 Int64 => Ok(self.i64().unwrap().prod_reduce()),
806 UInt64 => Ok(self.u64().unwrap().prod_reduce()),
807 #[cfg(feature = "dtype-i128")]
808 Int128 => Ok(self.i128().unwrap().prod_reduce()),
809 #[cfg(feature = "dtype-u128")]
810 UInt128 => Ok(self.u128().unwrap().prod_reduce()),
811 Float32 => Ok(self.f32().unwrap().prod_reduce()),
812 Float64 => Ok(self.f64().unwrap().prod_reduce()),
813 dt => {
814 polars_bail!(InvalidOperation: "`product` operation not supported for dtype `{dt}`")
815 },
816 }
817 }
818 #[cfg(not(feature = "product"))]
819 {
820 panic!("activate 'product' feature")
821 }
822 }
823
824 pub fn strict_cast(&self, dtype: &DataType) -> PolarsResult<Series> {
826 self.cast_with_options(dtype, CastOptions::Strict)
827 }
828
829 #[cfg(feature = "dtype-decimal")]
830 pub(crate) fn into_decimal(self, precision: usize, scale: usize) -> PolarsResult<Series> {
831 match self.dtype() {
832 DataType::Int128 => Ok(self
833 .i128()
834 .unwrap()
835 .clone()
836 .into_decimal(precision, scale)?
837 .into_series()),
838 DataType::Decimal(cur_prec, cur_scale)
839 if scale == *cur_scale && precision >= *cur_prec =>
840 {
841 Ok(self)
842 },
843 dt => panic!("into_decimal({precision:?}, {scale}) not implemented for {dt:?}"),
844 }
845 }
846
847 #[cfg(feature = "dtype-time")]
848 pub(crate) fn into_time(self) -> Series {
849 match self.dtype() {
850 DataType::Int64 => self.i64().unwrap().clone().into_time().into_series(),
851 DataType::Time => self
852 .time()
853 .unwrap()
854 .physical()
855 .clone()
856 .into_time()
857 .into_series(),
858 dt => panic!("date not implemented for {dt:?}"),
859 }
860 }
861
862 pub(crate) fn into_date(self) -> Series {
863 #[cfg(not(feature = "dtype-date"))]
864 {
865 panic!("activate feature dtype-date")
866 }
867 #[cfg(feature = "dtype-date")]
868 match self.dtype() {
869 DataType::Int32 => self.i32().unwrap().clone().into_date().into_series(),
870 DataType::Date => self
871 .date()
872 .unwrap()
873 .physical()
874 .clone()
875 .into_date()
876 .into_series(),
877 dt => panic!("date not implemented for {dt:?}"),
878 }
879 }
880
881 #[allow(unused_variables)]
882 pub(crate) fn into_datetime(self, timeunit: TimeUnit, tz: Option<TimeZone>) -> Series {
883 #[cfg(not(feature = "dtype-datetime"))]
884 {
885 panic!("activate feature dtype-datetime")
886 }
887
888 #[cfg(feature = "dtype-datetime")]
889 match self.dtype() {
890 DataType::Int64 => self
891 .i64()
892 .unwrap()
893 .clone()
894 .into_datetime(timeunit, tz)
895 .into_series(),
896 DataType::Datetime(_, _) => self
897 .datetime()
898 .unwrap()
899 .physical()
900 .clone()
901 .into_datetime(timeunit, tz)
902 .into_series(),
903 dt => panic!("into_datetime not implemented for {dt:?}"),
904 }
905 }
906
907 #[allow(unused_variables)]
908 pub(crate) fn into_duration(self, timeunit: TimeUnit) -> Series {
909 #[cfg(not(feature = "dtype-duration"))]
910 {
911 panic!("activate feature dtype-duration")
912 }
913 #[cfg(feature = "dtype-duration")]
914 match self.dtype() {
915 DataType::Int64 => self
916 .i64()
917 .unwrap()
918 .clone()
919 .into_duration(timeunit)
920 .into_series(),
921 DataType::Duration(_) => self
922 .duration()
923 .unwrap()
924 .physical()
925 .clone()
926 .into_duration(timeunit)
927 .into_series(),
928 dt => panic!("into_duration not implemented for {dt:?}"),
929 }
930 }
931
932 pub fn str_value(&self, index: usize) -> PolarsResult<Cow<'_, str>> {
934 Ok(self.0.get(index)?.str_value())
935 }
936 pub fn head(&self, length: Option<usize>) -> Series {
938 let len = length.unwrap_or(HEAD_DEFAULT_LENGTH);
939 self.slice(0, std::cmp::min(len, self.len()))
940 }
941
942 pub fn tail(&self, length: Option<usize>) -> Series {
944 let len = length.unwrap_or(TAIL_DEFAULT_LENGTH);
945 let len = std::cmp::min(len, self.len());
946 self.slice(-(len as i64), len)
947 }
948
949 pub fn unique_stable(&self) -> PolarsResult<Series> {
952 let idx = self.arg_unique()?;
953 unsafe { Ok(self.take_unchecked(&idx)) }
955 }
956
957 pub fn try_idx(&self) -> Option<&IdxCa> {
958 #[cfg(feature = "bigidx")]
959 {
960 self.try_u64()
961 }
962 #[cfg(not(feature = "bigidx"))]
963 {
964 self.try_u32()
965 }
966 }
967
968 pub fn idx(&self) -> PolarsResult<&IdxCa> {
969 #[cfg(feature = "bigidx")]
970 {
971 self.u64()
972 }
973 #[cfg(not(feature = "bigidx"))]
974 {
975 self.u32()
976 }
977 }
978
979 pub fn estimated_size(&self) -> usize {
992 let mut size = 0;
993 match self.dtype() {
994 #[cfg(feature = "object")]
996 DataType::Object(_) => {
997 let ArrowDataType::FixedSizeBinary(size) = self.chunks()[0].dtype() else {
998 unreachable!()
999 };
1000 return self.len() * *size;
1002 },
1003 _ => {},
1004 }
1005
1006 size += self
1007 .chunks()
1008 .iter()
1009 .map(|arr| estimated_bytes_size(&**arr))
1010 .sum::<usize>();
1011
1012 size
1013 }
1014
1015 pub fn as_list(&self) -> ListChunked {
1017 let s = self.rechunk();
1018 let values = s.chunks()[0].clone();
1020 let offsets = (0i64..(s.len() as i64 + 1)).collect::<Vec<_>>();
1021 let offsets = unsafe { Offsets::new_unchecked(offsets) };
1022
1023 let dtype = LargeListArray::default_datatype(
1024 s.dtype().to_physical().to_arrow(CompatLevel::newest()),
1025 );
1026 let new_arr = LargeListArray::new(dtype, offsets.into(), values, None);
1027 let mut out = ListChunked::with_chunk(s.name().clone(), new_arr);
1028 out.set_inner_dtype(s.dtype().clone());
1029 out
1030 }
1031
1032 pub fn row_encode_unordered(&self) -> PolarsResult<BinaryOffsetChunked> {
1033 row_encode::_get_rows_encoded_ca_unordered(
1034 self.name().clone(),
1035 &[self.clone().into_column()],
1036 )
1037 }
1038
1039 pub fn row_encode_ordered(
1040 &self,
1041 descending: bool,
1042 nulls_last: bool,
1043 ) -> PolarsResult<BinaryOffsetChunked> {
1044 row_encode::_get_rows_encoded_ca(
1045 self.name().clone(),
1046 &[self.clone().into_column()],
1047 &[descending],
1048 &[nulls_last],
1049 )
1050 }
1051}
1052
1053impl Deref for Series {
1054 type Target = dyn SeriesTrait;
1055
1056 fn deref(&self) -> &Self::Target {
1057 self.0.as_ref()
1058 }
1059}
1060
1061impl<'a> AsRef<dyn SeriesTrait + 'a> for Series {
1062 fn as_ref(&self) -> &(dyn SeriesTrait + 'a) {
1063 self.0.as_ref()
1064 }
1065}
1066
1067impl Default for Series {
1068 fn default() -> Self {
1069 Int64Chunked::default().into_series()
1070 }
1071}
1072
1073impl<T: PolarsPhysicalType> AsRef<ChunkedArray<T>> for dyn SeriesTrait + '_ {
1074 fn as_ref(&self) -> &ChunkedArray<T> {
1075 let Some(ca) = self.as_any().downcast_ref::<ChunkedArray<T>>() else {
1078 panic!(
1079 "implementation error, cannot get ref {:?} from {:?}",
1080 T::get_static_dtype(),
1081 self.dtype()
1082 );
1083 };
1084
1085 ca
1086 }
1087}
1088
1089impl<T: PolarsPhysicalType> AsMut<ChunkedArray<T>> for dyn SeriesTrait + '_ {
1090 fn as_mut(&mut self) -> &mut ChunkedArray<T> {
1091 if !self.as_any_mut().is::<ChunkedArray<T>>() {
1092 panic!(
1093 "implementation error, cannot get ref {:?} from {:?}",
1094 T::get_static_dtype(),
1095 self.dtype()
1096 );
1097 }
1098
1099 self.as_any_mut().downcast_mut::<ChunkedArray<T>>().unwrap()
1102 }
1103}
1104
1105#[cfg(test)]
1106mod test {
1107 use crate::prelude::*;
1108 use crate::series::*;
1109
1110 #[test]
1111 fn cast() {
1112 let ar = UInt32Chunked::new("a".into(), &[1, 2]);
1113 let s = ar.into_series();
1114 let s2 = s.cast(&DataType::Int64).unwrap();
1115
1116 assert!(s2.i64().is_ok());
1117 let s2 = s.cast(&DataType::Float32).unwrap();
1118 assert!(s2.f32().is_ok());
1119 }
1120
1121 #[test]
1122 fn new_series() {
1123 let _ = Series::new("boolean series".into(), &vec![true, false, true]);
1124 let _ = Series::new("int series".into(), &[1, 2, 3]);
1125 let ca = Int32Chunked::new("a".into(), &[1, 2, 3]);
1126 let _ = ca.into_series();
1127 }
1128
1129 #[test]
1130 #[cfg(feature = "dtype-date")]
1131 fn roundtrip_list_logical_20311() {
1132 let list = ListChunked::from_chunk_iter(
1133 PlSmallStr::from_static("a"),
1134 [ListArray::new(
1135 ArrowDataType::LargeList(Box::new(ArrowField::new(
1136 LIST_VALUES_NAME,
1137 ArrowDataType::Int32,
1138 true,
1139 ))),
1140 unsafe { Offsets::new_unchecked(vec![0, 1]) }.into(),
1141 PrimitiveArray::new(ArrowDataType::Int32, vec![1i32].into(), None).to_boxed(),
1142 None,
1143 )],
1144 );
1145 let list = unsafe { list.from_physical_unchecked(DataType::Date) }.unwrap();
1146 assert_eq!(list.dtype(), &DataType::List(Box::new(DataType::Date)));
1147 }
1148
1149 #[test]
1150 #[cfg(feature = "dtype-struct")]
1151 fn new_series_from_empty_structs() {
1152 let dtype = DataType::Struct(vec![]);
1153 let empties = vec![AnyValue::StructOwned(Box::new((vec![], vec![]))); 3];
1154 let s = Series::from_any_values_and_dtype("".into(), &empties, &dtype, false).unwrap();
1155 assert_eq!(s.len(), 3);
1156 }
1157 #[test]
1158 fn new_series_from_arrow_primitive_array() {
1159 let array = UInt32Array::from_slice([1, 2, 3, 4, 5]);
1160 let array_ref: ArrayRef = Box::new(array);
1161
1162 let _ = Series::try_new("foo".into(), array_ref).unwrap();
1163 }
1164
1165 #[test]
1166 fn series_append() {
1167 let mut s1 = Series::new("a".into(), &[1, 2]);
1168 let s2 = Series::new("b".into(), &[3]);
1169 s1.append(&s2).unwrap();
1170 assert_eq!(s1.len(), 3);
1171
1172 let s2 = Series::new("b".into(), &[3.0]);
1174 assert!(s1.append(&s2).is_err())
1175 }
1176
1177 #[test]
1178 #[cfg(feature = "dtype-decimal")]
1179 fn series_append_decimal() {
1180 let s1 = Series::new("a".into(), &[1.1, 2.3])
1181 .cast(&DataType::Decimal(38, 2))
1182 .unwrap();
1183 let s2 = Series::new("b".into(), &[3])
1184 .cast(&DataType::Decimal(38, 0))
1185 .unwrap();
1186
1187 {
1188 let mut s1 = s1.clone();
1189 s1.append(&s2).unwrap();
1190 assert_eq!(s1.len(), 3);
1191 assert_eq!(s1.get(2).unwrap(), AnyValue::Decimal(300, 38, 2));
1192 }
1193
1194 {
1195 let mut s2 = s2;
1196 s2.extend(&s1).unwrap();
1197 assert_eq!(s2.get(2).unwrap(), AnyValue::Decimal(2, 38, 0));
1198 }
1199 }
1200
1201 #[test]
1202 fn series_slice_works() {
1203 let series = Series::new("a".into(), &[1i64, 2, 3, 4, 5]);
1204
1205 let slice_1 = series.slice(-3, 3);
1206 let slice_2 = series.slice(-5, 5);
1207 let slice_3 = series.slice(0, 5);
1208
1209 assert_eq!(slice_1.get(0).unwrap(), AnyValue::Int64(3));
1210 assert_eq!(slice_2.get(0).unwrap(), AnyValue::Int64(1));
1211 assert_eq!(slice_3.get(0).unwrap(), AnyValue::Int64(1));
1212 }
1213
1214 #[test]
1215 fn out_of_range_slice_does_not_panic() {
1216 let series = Series::new("a".into(), &[1i64, 2, 3, 4, 5]);
1217
1218 let _ = series.slice(-3, 4);
1219 let _ = series.slice(-6, 2);
1220 let _ = series.slice(4, 2);
1221 }
1222}