polars_core/series/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
//! Type agnostic columnar data structure.
use crate::chunked_array::flags::StatisticsFlags;
pub use crate::prelude::ChunkCompareEq;
use crate::prelude::*;
use crate::{HEAD_DEFAULT_LENGTH, TAIL_DEFAULT_LENGTH};

macro_rules! invalid_operation_panic {
    ($op:ident, $s:expr) => {
        panic!(
            "`{}` operation not supported for dtype `{}`",
            stringify!($op),
            $s._dtype()
        )
    };
}

pub mod amortized_iter;
mod any_value;
pub mod arithmetic;
mod comparison;
mod from;
pub mod implementations;
mod into;
pub(crate) mod iterator;
pub mod ops;
mod series_trait;

use std::borrow::Cow;
use std::hash::{Hash, Hasher};
use std::ops::Deref;

use arrow::compute::aggregate::estimated_bytes_size;
use arrow::offset::Offsets;
pub use from::*;
pub use iterator::{SeriesIter, SeriesPhysIter};
use num_traits::NumCast;
use polars_error::feature_gated;
pub use series_trait::{IsSorted, *};

use crate::chunked_array::cast::CastOptions;
#[cfg(feature = "zip_with")]
use crate::series::arithmetic::coerce_lhs_rhs;
use crate::utils::{handle_casting_failures, materialize_dyn_int, Wrap};
use crate::POOL;

/// # Series
/// The columnar data type for a DataFrame.
///
/// Most of the available functions are defined in the [SeriesTrait trait](crate::series::SeriesTrait).
///
/// The `Series` struct consists
/// of typed [ChunkedArray]'s. To quickly cast
/// a `Series` to a `ChunkedArray` you can call the method with the name of the type:
///
/// ```
/// # use polars_core::prelude::*;
/// let s: Series = [1, 2, 3].iter().collect();
/// // Quickly obtain the ChunkedArray wrapped by the Series.
/// let chunked_array = s.i32().unwrap();
/// ```
///
/// ## Arithmetic
///
/// You can do standard arithmetic on series.
/// ```
/// # use polars_core::prelude::*;
/// let s = Series::new("a".into(), [1 , 2, 3]);
/// let out_add = &s + &s;
/// let out_sub = &s - &s;
/// let out_div = &s / &s;
/// let out_mul = &s * &s;
/// ```
///
/// Or with series and numbers.
///
/// ```
/// # use polars_core::prelude::*;
/// let s: Series = (1..3).collect();
/// let out_add_one = &s + 1;
/// let out_multiply = &s * 10;
///
/// // Could not overload left hand side operator.
/// let out_divide = 1.div(&s);
/// let out_add = 1.add(&s);
/// let out_subtract = 1.sub(&s);
/// let out_multiply = 1.mul(&s);
/// ```
///
/// ## Comparison
/// You can obtain boolean mask by comparing series.
///
/// ```
/// # use polars_core::prelude::*;
/// let s = Series::new("dollars".into(), &[1, 2, 3]);
/// let mask = s.equal(1).unwrap();
/// let valid = [true, false, false].iter();
/// assert!(mask
///     .into_iter()
///     .map(|opt_bool| opt_bool.unwrap()) // option, because series can be null
///     .zip(valid)
///     .all(|(a, b)| a == *b))
/// ```
///
/// See all the comparison operators in the [ChunkCompareEq trait](crate::chunked_array::ops::ChunkCompareEq) and
/// [ChunkCompareIneq trait](crate::chunked_array::ops::ChunkCompareIneq).
///
/// ## Iterators
/// The Series variants contain differently typed [ChunkedArray](crate::chunked_array::ChunkedArray)s.
/// These structs can be turned into iterators, making it possible to use any function/ closure you want
/// on a Series.
///
/// These iterators return an `Option<T>` because the values of a series may be null.
///
/// ```
/// use polars_core::prelude::*;
/// let pi = 3.14;
/// let s = Series::new("angle".into(), [2f32 * pi, pi, 1.5 * pi].as_ref());
/// let s_cos: Series = s.f32()
///                     .expect("series was not an f32 dtype")
///                     .into_iter()
///                     .map(|opt_angle| opt_angle.map(|angle| angle.cos()))
///                     .collect();
/// ```
///
/// ## Creation
/// Series can be create from different data structures. Below we'll show a few ways we can create
/// a Series object.
///
/// ```
/// # use polars_core::prelude::*;
/// // Series can be created from Vec's, slices and arrays
/// Series::new("boolean series".into(), &[true, false, true]);
/// Series::new("int series".into(), &[1, 2, 3]);
/// // And can be nullable
/// Series::new("got nulls".into(), &[Some(1), None, Some(2)]);
///
/// // Series can also be collected from iterators
/// let from_iter: Series = (0..10)
///     .into_iter()
///     .collect();
///
/// ```
#[derive(Clone)]
#[must_use]
pub struct Series(pub Arc<dyn SeriesTrait>);

impl PartialEq for Wrap<Series> {
    fn eq(&self, other: &Self) -> bool {
        self.0.equals_missing(other)
    }
}

impl Eq for Wrap<Series> {}

impl Hash for Wrap<Series> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        let rs = PlRandomState::with_seeds(0, 0, 0, 0);
        let mut h = vec![];
        if self.0.vec_hash(rs, &mut h).is_ok() {
            let h = h.into_iter().fold(0, |a: u64, b| a.wrapping_add(b));
            h.hash(state)
        } else {
            self.len().hash(state);
            self.null_count().hash(state);
            self.dtype().hash(state);
        }
    }
}

impl Series {
    /// Create a new empty Series.
    pub fn new_empty(name: PlSmallStr, dtype: &DataType) -> Series {
        Series::full_null(name, 0, dtype)
    }

    pub fn clear(&self) -> Series {
        if self.is_empty() {
            self.clone()
        } else {
            match self.dtype() {
                #[cfg(feature = "object")]
                DataType::Object(_, _) => self
                    .take(&ChunkedArray::<IdxType>::new_vec(PlSmallStr::EMPTY, vec![]))
                    .unwrap(),
                dt => Series::new_empty(self.name().clone(), dt),
            }
        }
    }

    #[doc(hidden)]
    pub fn _get_inner_mut(&mut self) -> &mut dyn SeriesTrait {
        if Arc::weak_count(&self.0) + Arc::strong_count(&self.0) != 1 {
            self.0 = self.0.clone_inner();
        }
        Arc::get_mut(&mut self.0).expect("implementation error")
    }

    /// Take or clone a owned copy of the inner [`ChunkedArray`].
    pub fn take_inner<T>(self) -> ChunkedArray<T>
    where
        T: 'static + PolarsDataType<IsLogical = FalseT>,
    {
        let arc_any = self.0.as_arc_any();
        let downcast = arc_any
            .downcast::<implementations::SeriesWrap<ChunkedArray<T>>>()
            .unwrap();

        match Arc::try_unwrap(downcast) {
            Ok(ca) => ca.0,
            Err(ca) => ca.as_ref().as_ref().clone(),
        }
    }

    /// # Safety
    /// The caller must ensure the length and the data types of `ArrayRef` does not change.
    /// And that the null_count is updated (e.g. with a `compute_len()`)
    pub unsafe fn chunks_mut(&mut self) -> &mut Vec<ArrayRef> {
        #[allow(unused_mut)]
        let mut ca = self._get_inner_mut();
        ca.chunks_mut()
    }

    pub fn into_chunks(mut self) -> Vec<ArrayRef> {
        let ca = self._get_inner_mut();
        let chunks = std::mem::take(unsafe { ca.chunks_mut() });
        ca.compute_len();
        chunks
    }

    // TODO! this probably can now be removed, now we don't have special case for structs.
    pub fn select_chunk(&self, i: usize) -> Self {
        let mut new = self.clear();
        let mut flags = self.get_flags();

        use StatisticsFlags as F;
        flags &= F::IS_SORTED_ANY | F::CAN_FAST_EXPLODE_LIST;

        // Assign mut so we go through arc only once.
        let mut_new = new._get_inner_mut();
        let chunks = unsafe { mut_new.chunks_mut() };
        let chunk = self.chunks()[i].clone();
        chunks.clear();
        chunks.push(chunk);
        mut_new.compute_len();
        mut_new._set_flags(flags);
        new
    }

    pub fn is_sorted_flag(&self) -> IsSorted {
        if self.len() <= 1 {
            return IsSorted::Ascending;
        }
        self.get_flags().is_sorted()
    }

    pub fn set_sorted_flag(&mut self, sorted: IsSorted) {
        let mut flags = self.get_flags();
        flags.set_sorted(sorted);
        self.set_flags(flags);
    }

    pub(crate) fn clear_flags(&mut self) {
        self.set_flags(StatisticsFlags::empty());
    }
    pub fn get_flags(&self) -> StatisticsFlags {
        self.0._get_flags()
    }

    pub(crate) fn set_flags(&mut self, flags: StatisticsFlags) {
        self._get_inner_mut()._set_flags(flags)
    }

    pub fn into_frame(self) -> DataFrame {
        // SAFETY: A single-column dataframe cannot have length mismatches or duplicate names
        unsafe { DataFrame::new_no_checks(self.len(), vec![self.into()]) }
    }

    /// Rename series.
    pub fn rename(&mut self, name: PlSmallStr) -> &mut Series {
        self._get_inner_mut().rename(name);
        self
    }

    /// Return this Series with a new name.
    pub fn with_name(mut self, name: PlSmallStr) -> Series {
        self.rename(name);
        self
    }

    pub fn from_arrow_chunks(name: PlSmallStr, arrays: Vec<ArrayRef>) -> PolarsResult<Series> {
        Self::try_from((name, arrays))
    }

    pub fn from_arrow(name: PlSmallStr, array: ArrayRef) -> PolarsResult<Series> {
        Self::try_from((name, array))
    }

    /// Shrink the capacity of this array to fit its length.
    pub fn shrink_to_fit(&mut self) {
        self._get_inner_mut().shrink_to_fit()
    }

    /// Append in place. This is done by adding the chunks of `other` to this [`Series`].
    ///
    /// See [`ChunkedArray::append`] and [`ChunkedArray::extend`].
    pub fn append(&mut self, other: &Series) -> PolarsResult<&mut Self> {
        let must_cast = other.dtype().matches_schema_type(self.dtype())?;
        if must_cast {
            let other = other.cast(self.dtype())?;
            self.append_owned(other)?;
        } else {
            self._get_inner_mut().append(other)?;
        }
        Ok(self)
    }

    /// Append in place. This is done by adding the chunks of `other` to this [`Series`].
    ///
    /// See [`ChunkedArray::append_owned`] and [`ChunkedArray::extend`].
    pub fn append_owned(&mut self, other: Series) -> PolarsResult<&mut Self> {
        let must_cast = other.dtype().matches_schema_type(self.dtype())?;
        if must_cast {
            let other = other.cast(self.dtype())?;
            self._get_inner_mut().append_owned(other)?;
        } else {
            self._get_inner_mut().append_owned(other)?;
        }
        Ok(self)
    }

    /// Redo a length and null_count compute
    pub fn compute_len(&mut self) {
        self._get_inner_mut().compute_len()
    }

    /// Extend the memory backed by this array with the values from `other`.
    ///
    /// See [`ChunkedArray::extend`] and [`ChunkedArray::append`].
    pub fn extend(&mut self, other: &Series) -> PolarsResult<&mut Self> {
        let must_cast = other.dtype().matches_schema_type(self.dtype())?;
        if must_cast {
            let other = other.cast(self.dtype())?;
            self._get_inner_mut().extend(&other)?;
        } else {
            self._get_inner_mut().extend(other)?;
        }
        Ok(self)
    }

    /// Sort the series with specific options.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// # fn main() -> PolarsResult<()> {
    /// let s = Series::new("foo".into(), [2, 1, 3]);
    /// let sorted = s.sort(SortOptions::default())?;
    /// assert_eq!(sorted, Series::new("foo".into(), [1, 2, 3]));
    /// # Ok(())
    /// }
    /// ```
    ///
    /// See [`SortOptions`] for more options.
    pub fn sort(&self, sort_options: SortOptions) -> PolarsResult<Self> {
        self.sort_with(sort_options)
    }

    /// Only implemented for numeric types
    pub fn as_single_ptr(&mut self) -> PolarsResult<usize> {
        self._get_inner_mut().as_single_ptr()
    }

    pub fn cast(&self, dtype: &DataType) -> PolarsResult<Self> {
        self.cast_with_options(dtype, CastOptions::NonStrict)
    }

    /// Cast [`Series`] to another [`DataType`].
    pub fn cast_with_options(&self, dtype: &DataType, options: CastOptions) -> PolarsResult<Self> {
        use DataType as D;

        let do_clone = match dtype {
            D::Unknown(UnknownKind::Any) => true,
            D::Unknown(UnknownKind::Int(_)) if self.dtype().is_integer() => true,
            D::Unknown(UnknownKind::Float) if self.dtype().is_float() => true,
            D::Unknown(UnknownKind::Str)
                if self.dtype().is_string() | self.dtype().is_categorical() =>
            {
                true
            },
            dt if dt.is_primitive() && dt == self.dtype() => true,
            _ => false,
        };

        if do_clone {
            return Ok(self.clone());
        }

        pub fn cast_dtype(dtype: &DataType) -> Option<DataType> {
            match dtype {
                D::Unknown(UnknownKind::Int(v)) => Some(materialize_dyn_int(*v).dtype()),
                D::Unknown(UnknownKind::Float) => Some(DataType::Float64),
                D::Unknown(UnknownKind::Str) => Some(DataType::String),
                // Best leave as is.
                D::List(inner) => cast_dtype(inner.as_ref()).map(Box::new).map(D::List),
                #[cfg(feature = "dtype-struct")]
                D::Struct(fields) => {
                    // @NOTE: We only allocate if we really need to.

                    let mut field_iter = fields.iter().enumerate();
                    let mut new_fields = loop {
                        let (i, field) = field_iter.next()?;

                        if let Some(dtype) = cast_dtype(&field.dtype) {
                            let mut new_fields = Vec::with_capacity(fields.len());
                            new_fields.extend(fields.iter().take(i).cloned());
                            new_fields.push(Field {
                                name: field.name.clone(),
                                dtype,
                            });
                            break new_fields;
                        }
                    };

                    new_fields.extend(fields.iter().skip(new_fields.len()).cloned().map(|field| {
                        let dtype = cast_dtype(&field.dtype).unwrap_or(field.dtype);
                        Field {
                            name: field.name.clone(),
                            dtype,
                        }
                    }));

                    Some(D::Struct(new_fields))
                },
                _ => None,
            }
        }

        let casted = cast_dtype(dtype);
        let dtype = match casted {
            None => dtype,
            Some(ref dtype) => dtype,
        };

        // Always allow casting all nulls to other all nulls.
        let len = self.len();
        if self.null_count() == len {
            return Ok(Series::full_null(self.name().clone(), len, dtype));
        }

        let new_options = match options {
            // Strictness is handled on this level to improve error messages.
            CastOptions::Strict => CastOptions::NonStrict,
            opt => opt,
        };

        let ret = self.0.cast(dtype, new_options);

        match options {
            CastOptions::NonStrict | CastOptions::Overflowing => ret,
            CastOptions::Strict => {
                let ret = ret?;
                if self.null_count() != ret.null_count() {
                    handle_casting_failures(self, &ret)?;
                }
                Ok(ret)
            },
        }
    }

    /// Cast from physical to logical types without any checks on the validity of the cast.
    ///
    /// # Safety
    ///
    /// This can lead to invalid memory access in downstream code.
    pub unsafe fn cast_unchecked(&self, dtype: &DataType) -> PolarsResult<Self> {
        match self.dtype() {
            #[cfg(feature = "dtype-struct")]
            DataType::Struct(_) => self.struct_().unwrap().cast_unchecked(dtype),
            DataType::List(_) => self.list().unwrap().cast_unchecked(dtype),
            dt if dt.is_primitive_numeric() => {
                with_match_physical_numeric_polars_type!(dt, |$T| {
                    let ca: &ChunkedArray<$T> = self.as_ref().as_ref().as_ref();
                        ca.cast_unchecked(dtype)
                })
            },
            DataType::Binary => self.binary().unwrap().cast_unchecked(dtype),
            _ => self.cast_with_options(dtype, CastOptions::Overflowing),
        }
    }

    /// Convert a non-logical series back into a logical series without casting.
    ///
    /// # Safety
    ///
    /// This can lead to invalid memory access in downstream code.
    pub unsafe fn from_physical_unchecked(&self, dtype: &DataType) -> PolarsResult<Self> {
        debug_assert!(!self.dtype().is_logical());

        if self.dtype() == dtype {
            return Ok(self.clone());
        }

        use DataType as D;
        match (self.dtype(), dtype) {
            #[cfg(feature = "dtype-decimal")]
            (D::Int128, D::Decimal(precision, scale)) => {
                self.clone().into_decimal(*precision, scale.unwrap())
            },

            #[cfg(feature = "dtype-categorical")]
            (D::UInt32, D::Categorical(revmap, ordering)) => Ok(unsafe {
                CategoricalChunked::from_cats_and_rev_map_unchecked(
                    self.u32().unwrap().clone(),
                    revmap.as_ref().unwrap().clone(),
                    false,
                    *ordering,
                )
            }
            .into_series()),
            #[cfg(feature = "dtype-categorical")]
            (D::UInt32, D::Enum(revmap, ordering)) => Ok(unsafe {
                CategoricalChunked::from_cats_and_rev_map_unchecked(
                    self.u32().unwrap().clone(),
                    revmap.as_ref().unwrap().clone(),
                    true,
                    *ordering,
                )
            }
            .into_series()),

            (D::Int32, D::Date) => feature_gated!("dtype-time", Ok(self.clone().into_date())),
            (D::Int64, D::Datetime(tu, tz)) => feature_gated!(
                "dtype-datetime",
                Ok(self.clone().into_datetime(*tu, tz.clone()))
            ),
            (D::Int64, D::Duration(tu)) => {
                feature_gated!("dtype-duration", Ok(self.clone().into_duration(*tu)))
            },
            (D::Int64, D::Time) => feature_gated!("dtype-time", Ok(self.clone().into_time())),

            (D::List(_), D::List(to)) => unsafe {
                self.list()
                    .unwrap()
                    .from_physical_unchecked(to.as_ref().clone())
                    .map(|ca| ca.into_series())
            },
            #[cfg(feature = "dtype-array")]
            (D::Array(_, lw), D::Array(to, rw)) if lw == rw => unsafe {
                self.array()
                    .unwrap()
                    .from_physical_unchecked(to.as_ref().clone())
                    .map(|ca| ca.into_series())
            },
            #[cfg(feature = "dtype-struct")]
            (D::Struct(_), D::Struct(to)) => unsafe {
                self.struct_()
                    .unwrap()
                    .from_physical_unchecked(to.as_slice())
                    .map(|ca| ca.into_series())
            },

            _ => panic!("invalid from_physical({dtype:?}) for {:?}", self.dtype()),
        }
    }

    /// Cast numerical types to f64, and keep floats as is.
    pub fn to_float(&self) -> PolarsResult<Series> {
        match self.dtype() {
            DataType::Float32 | DataType::Float64 => Ok(self.clone()),
            _ => self.cast_with_options(&DataType::Float64, CastOptions::Overflowing),
        }
    }

    /// Compute the sum of all values in this Series.
    /// Returns `Some(0)` if the array is empty, and `None` if the array only
    /// contains null values.
    ///
    /// If the [`DataType`] is one of `{Int8, UInt8, Int16, UInt16}` the `Series` is
    /// first cast to `Int64` to prevent overflow issues.
    pub fn sum<T>(&self) -> PolarsResult<T>
    where
        T: NumCast,
    {
        let sum = self.sum_reduce()?;
        let sum = sum.value().extract().unwrap();
        Ok(sum)
    }

    /// Returns the minimum value in the array, according to the natural order.
    /// Returns an option because the array is nullable.
    pub fn min<T>(&self) -> PolarsResult<Option<T>>
    where
        T: NumCast,
    {
        let min = self.min_reduce()?;
        let min = min.value().extract::<T>();
        Ok(min)
    }

    /// Returns the maximum value in the array, according to the natural order.
    /// Returns an option because the array is nullable.
    pub fn max<T>(&self) -> PolarsResult<Option<T>>
    where
        T: NumCast,
    {
        let max = self.max_reduce()?;
        let max = max.value().extract::<T>();
        Ok(max)
    }

    /// Explode a list Series. This expands every item to a new row..
    pub fn explode(&self) -> PolarsResult<Series> {
        match self.dtype() {
            DataType::List(_) => self.list().unwrap().explode(),
            #[cfg(feature = "dtype-array")]
            DataType::Array(_, _) => self.array().unwrap().explode(),
            _ => Ok(self.clone()),
        }
    }

    /// Check if numeric value is NaN (note this is different than missing/ null)
    pub fn is_nan(&self) -> PolarsResult<BooleanChunked> {
        match self.dtype() {
            DataType::Float32 => Ok(self.f32().unwrap().is_nan()),
            DataType::Float64 => Ok(self.f64().unwrap().is_nan()),
            dt if dt.is_primitive_numeric() => {
                let arr = BooleanArray::full(self.len(), false, ArrowDataType::Boolean)
                    .with_validity(self.rechunk_validity());
                Ok(BooleanChunked::with_chunk(self.name().clone(), arr))
            },
            _ => polars_bail!(opq = is_nan, self.dtype()),
        }
    }

    /// Check if numeric value is NaN (note this is different than missing/null)
    pub fn is_not_nan(&self) -> PolarsResult<BooleanChunked> {
        match self.dtype() {
            DataType::Float32 => Ok(self.f32().unwrap().is_not_nan()),
            DataType::Float64 => Ok(self.f64().unwrap().is_not_nan()),
            dt if dt.is_primitive_numeric() => {
                let arr = BooleanArray::full(self.len(), true, ArrowDataType::Boolean)
                    .with_validity(self.rechunk_validity());
                Ok(BooleanChunked::with_chunk(self.name().clone(), arr))
            },
            _ => polars_bail!(opq = is_not_nan, self.dtype()),
        }
    }

    /// Check if numeric value is finite
    pub fn is_finite(&self) -> PolarsResult<BooleanChunked> {
        match self.dtype() {
            DataType::Float32 => Ok(self.f32().unwrap().is_finite()),
            DataType::Float64 => Ok(self.f64().unwrap().is_finite()),
            dt if dt.is_primitive_numeric() => {
                let arr = BooleanArray::full(self.len(), true, ArrowDataType::Boolean)
                    .with_validity(self.rechunk_validity());
                Ok(BooleanChunked::with_chunk(self.name().clone(), arr))
            },
            _ => polars_bail!(opq = is_finite, self.dtype()),
        }
    }

    /// Check if numeric value is infinite
    pub fn is_infinite(&self) -> PolarsResult<BooleanChunked> {
        match self.dtype() {
            DataType::Float32 => Ok(self.f32().unwrap().is_infinite()),
            DataType::Float64 => Ok(self.f64().unwrap().is_infinite()),
            dt if dt.is_primitive_numeric() => {
                let arr = BooleanArray::full(self.len(), false, ArrowDataType::Boolean)
                    .with_validity(self.rechunk_validity());
                Ok(BooleanChunked::with_chunk(self.name().clone(), arr))
            },
            _ => polars_bail!(opq = is_infinite, self.dtype()),
        }
    }

    /// Create a new ChunkedArray with values from self where the mask evaluates `true` and values
    /// from `other` where the mask evaluates `false`. This function automatically broadcasts unit
    /// length inputs.
    #[cfg(feature = "zip_with")]
    pub fn zip_with(&self, mask: &BooleanChunked, other: &Series) -> PolarsResult<Series> {
        let (lhs, rhs) = coerce_lhs_rhs(self, other)?;
        lhs.zip_with_same_type(mask, rhs.as_ref())
    }

    /// Converts a Series to their physical representation, if they have one,
    /// otherwise the series is left unchanged.
    ///
    /// * Date -> Int32
    /// * Datetime -> Int64
    /// * Duration -> Int64
    /// * Decimal -> Int128
    /// * Time -> Int64
    /// * Categorical -> UInt32
    /// * List(inner) -> List(physical of inner)
    /// * Array(inner) -> Array(physical of inner)
    /// * Struct -> Struct with physical repr of each struct column
    pub fn to_physical_repr(&self) -> Cow<Series> {
        use DataType::*;
        match self.dtype() {
            // NOTE: Don't use cast here, as it might rechunk (if all nulls)
            // which is not allowed in a phys repr.
            #[cfg(feature = "dtype-date")]
            Date => Cow::Owned(self.date().unwrap().0.clone().into_series()),
            #[cfg(feature = "dtype-datetime")]
            Datetime(_, _) => Cow::Owned(self.datetime().unwrap().0.clone().into_series()),
            #[cfg(feature = "dtype-duration")]
            Duration(_) => Cow::Owned(self.duration().unwrap().0.clone().into_series()),
            #[cfg(feature = "dtype-time")]
            Time => Cow::Owned(self.time().unwrap().0.clone().into_series()),
            #[cfg(feature = "dtype-categorical")]
            Categorical(_, _) | Enum(_, _) => {
                let ca = self.categorical().unwrap();
                Cow::Owned(ca.physical().clone().into_series())
            },
            #[cfg(feature = "dtype-decimal")]
            Decimal(_, _) => Cow::Owned(self.decimal().unwrap().0.clone().into_series()),
            List(_) => match self.list().unwrap().to_physical_repr() {
                Cow::Borrowed(_) => Cow::Borrowed(self),
                Cow::Owned(ca) => Cow::Owned(ca.into_series()),
            },
            #[cfg(feature = "dtype-array")]
            Array(_, _) => match self.array().unwrap().to_physical_repr() {
                Cow::Borrowed(_) => Cow::Borrowed(self),
                Cow::Owned(ca) => Cow::Owned(ca.into_series()),
            },
            #[cfg(feature = "dtype-struct")]
            Struct(_) => match self.struct_().unwrap().to_physical_repr() {
                Cow::Borrowed(_) => Cow::Borrowed(self),
                Cow::Owned(ca) => Cow::Owned(ca.into_series()),
            },
            _ => Cow::Borrowed(self),
        }
    }

    /// Traverse and collect every nth element in a new array.
    pub fn gather_every(&self, n: usize, offset: usize) -> Series {
        let idx = ((offset as IdxSize)..self.len() as IdxSize)
            .step_by(n)
            .collect_ca(PlSmallStr::EMPTY);
        // SAFETY: we stay in-bounds.
        unsafe { self.take_unchecked(&idx) }
    }

    #[cfg(feature = "dot_product")]
    pub fn dot(&self, other: &Series) -> PolarsResult<f64> {
        std::ops::Mul::mul(self, other)?.sum::<f64>()
    }

    /// Get the sum of the Series as a new Series of length 1.
    /// Returns a Series with a single zeroed entry if self is an empty numeric series.
    ///
    /// If the [`DataType`] is one of `{Int8, UInt8, Int16, UInt16}` the `Series` is
    /// first cast to `Int64` to prevent overflow issues.
    pub fn sum_reduce(&self) -> PolarsResult<Scalar> {
        use DataType::*;
        match self.dtype() {
            Int8 | UInt8 | Int16 | UInt16 => self.cast(&Int64).unwrap().sum_reduce(),
            _ => self.0.sum_reduce(),
        }
    }

    /// Get the product of an array.
    ///
    /// If the [`DataType`] is one of `{Int8, UInt8, Int16, UInt16}` the `Series` is
    /// first cast to `Int64` to prevent overflow issues.
    pub fn product(&self) -> PolarsResult<Scalar> {
        #[cfg(feature = "product")]
        {
            use DataType::*;
            match self.dtype() {
                Boolean => self.cast(&DataType::Int64).unwrap().product(),
                Int8 | UInt8 | Int16 | UInt16 | Int32 | UInt32 => {
                    let s = self.cast(&Int64).unwrap();
                    s.product()
                },
                Int64 => Ok(self.i64().unwrap().prod_reduce()),
                UInt64 => Ok(self.u64().unwrap().prod_reduce()),
                #[cfg(feature = "dtype-i128")]
                Int128 => Ok(self.i128().unwrap().prod_reduce()),
                Float32 => Ok(self.f32().unwrap().prod_reduce()),
                Float64 => Ok(self.f64().unwrap().prod_reduce()),
                dt => {
                    polars_bail!(InvalidOperation: "`product` operation not supported for dtype `{dt}`")
                },
            }
        }
        #[cfg(not(feature = "product"))]
        {
            panic!("activate 'product' feature")
        }
    }

    /// Cast throws an error if conversion had overflows
    pub fn strict_cast(&self, dtype: &DataType) -> PolarsResult<Series> {
        self.cast_with_options(dtype, CastOptions::Strict)
    }

    #[cfg(feature = "dtype-decimal")]
    pub(crate) fn into_decimal(
        self,
        precision: Option<usize>,
        scale: usize,
    ) -> PolarsResult<Series> {
        match self.dtype() {
            DataType::Int128 => Ok(self
                .i128()
                .unwrap()
                .clone()
                .into_decimal(precision, scale)?
                .into_series()),
            DataType::Decimal(cur_prec, cur_scale)
                if (cur_prec.is_none() || precision.is_none() || *cur_prec == precision)
                    && *cur_scale == Some(scale) =>
            {
                Ok(self)
            },
            dt => panic!("into_decimal({precision:?}, {scale}) not implemented for {dt:?}"),
        }
    }

    #[cfg(feature = "dtype-time")]
    pub(crate) fn into_time(self) -> Series {
        match self.dtype() {
            DataType::Int64 => self.i64().unwrap().clone().into_time().into_series(),
            DataType::Time => self
                .time()
                .unwrap()
                .as_ref()
                .clone()
                .into_time()
                .into_series(),
            dt => panic!("date not implemented for {dt:?}"),
        }
    }

    pub(crate) fn into_date(self) -> Series {
        #[cfg(not(feature = "dtype-date"))]
        {
            panic!("activate feature dtype-date")
        }
        #[cfg(feature = "dtype-date")]
        match self.dtype() {
            DataType::Int32 => self.i32().unwrap().clone().into_date().into_series(),
            DataType::Date => self
                .date()
                .unwrap()
                .as_ref()
                .clone()
                .into_date()
                .into_series(),
            dt => panic!("date not implemented for {dt:?}"),
        }
    }

    #[allow(unused_variables)]
    pub(crate) fn into_datetime(self, timeunit: TimeUnit, tz: Option<TimeZone>) -> Series {
        #[cfg(not(feature = "dtype-datetime"))]
        {
            panic!("activate feature dtype-datetime")
        }

        #[cfg(feature = "dtype-datetime")]
        match self.dtype() {
            DataType::Int64 => self
                .i64()
                .unwrap()
                .clone()
                .into_datetime(timeunit, tz)
                .into_series(),
            DataType::Datetime(_, _) => self
                .datetime()
                .unwrap()
                .as_ref()
                .clone()
                .into_datetime(timeunit, tz)
                .into_series(),
            dt => panic!("into_datetime not implemented for {dt:?}"),
        }
    }

    #[allow(unused_variables)]
    pub(crate) fn into_duration(self, timeunit: TimeUnit) -> Series {
        #[cfg(not(feature = "dtype-duration"))]
        {
            panic!("activate feature dtype-duration")
        }
        #[cfg(feature = "dtype-duration")]
        match self.dtype() {
            DataType::Int64 => self
                .i64()
                .unwrap()
                .clone()
                .into_duration(timeunit)
                .into_series(),
            DataType::Duration(_) => self
                .duration()
                .unwrap()
                .as_ref()
                .clone()
                .into_duration(timeunit)
                .into_series(),
            dt => panic!("into_duration not implemented for {dt:?}"),
        }
    }

    // used for formatting
    pub fn str_value(&self, index: usize) -> PolarsResult<Cow<str>> {
        Ok(self.0.get(index)?.str_value())
    }
    /// Get the head of the Series.
    pub fn head(&self, length: Option<usize>) -> Series {
        let len = length.unwrap_or(HEAD_DEFAULT_LENGTH);
        self.slice(0, std::cmp::min(len, self.len()))
    }

    /// Get the tail of the Series.
    pub fn tail(&self, length: Option<usize>) -> Series {
        let len = length.unwrap_or(TAIL_DEFAULT_LENGTH);
        let len = std::cmp::min(len, self.len());
        self.slice(-(len as i64), len)
    }

    pub fn mean_reduce(&self) -> Scalar {
        crate::scalar::reduce::mean_reduce(self.mean(), self.dtype().clone())
    }

    /// Compute the unique elements, but maintain order. This requires more work
    /// than a naive [`Series::unique`](SeriesTrait::unique).
    pub fn unique_stable(&self) -> PolarsResult<Series> {
        let idx = self.arg_unique()?;
        // SAFETY: Indices are in bounds.
        unsafe { Ok(self.take_unchecked(&idx)) }
    }

    pub fn try_idx(&self) -> Option<&IdxCa> {
        #[cfg(feature = "bigidx")]
        {
            self.try_u64()
        }
        #[cfg(not(feature = "bigidx"))]
        {
            self.try_u32()
        }
    }

    pub fn idx(&self) -> PolarsResult<&IdxCa> {
        #[cfg(feature = "bigidx")]
        {
            self.u64()
        }
        #[cfg(not(feature = "bigidx"))]
        {
            self.u32()
        }
    }

    /// Returns an estimation of the total (heap) allocated size of the `Series` in bytes.
    ///
    /// # Implementation
    /// This estimation is the sum of the size of its buffers, validity, including nested arrays.
    /// Multiple arrays may share buffers and bitmaps. Therefore, the size of 2 arrays is not the
    /// sum of the sizes computed from this function. In particular, [`StructArray`]'s size is an upper bound.
    ///
    /// When an array is sliced, its allocated size remains constant because the buffer unchanged.
    /// However, this function will yield a smaller number. This is because this function returns
    /// the visible size of the buffer, not its total capacity.
    ///
    /// FFI buffers are included in this estimation.
    pub fn estimated_size(&self) -> usize {
        let mut size = 0;
        match self.dtype() {
            #[cfg(feature = "dtype-categorical")]
            DataType::Categorical(Some(rv), _) | DataType::Enum(Some(rv), _) => match &**rv {
                RevMapping::Local(arr, _) => size += estimated_bytes_size(arr),
                RevMapping::Global(map, arr, _) => {
                    size += map.capacity() * size_of::<u32>() * 2 + estimated_bytes_size(arr);
                },
            },
            #[cfg(feature = "object")]
            DataType::Object(_, _) => {
                let ArrowDataType::FixedSizeBinary(size) = self.chunks()[0].dtype() else {
                    unreachable!()
                };
                // This is only the pointer size in python. So will be a huge underestimation.
                return self.len() * *size;
            },
            _ => {},
        }

        size += self
            .chunks()
            .iter()
            .map(|arr| estimated_bytes_size(&**arr))
            .sum::<usize>();

        size
    }

    /// Packs every element into a list.
    pub fn as_list(&self) -> ListChunked {
        let s = self.rechunk();
        // don't  use `to_arrow` as we need the physical types
        let values = s.chunks()[0].clone();
        let offsets = (0i64..(s.len() as i64 + 1)).collect::<Vec<_>>();
        let offsets = unsafe { Offsets::new_unchecked(offsets) };

        let dtype = LargeListArray::default_datatype(
            s.dtype().to_physical().to_arrow(CompatLevel::newest()),
        );
        let new_arr = LargeListArray::new(dtype, offsets.into(), values, None);
        let mut out = ListChunked::with_chunk(s.name().clone(), new_arr);
        out.set_inner_dtype(s.dtype().clone());
        out
    }
}

impl Deref for Series {
    type Target = dyn SeriesTrait;

    fn deref(&self) -> &Self::Target {
        self.0.as_ref()
    }
}

impl<'a> AsRef<(dyn SeriesTrait + 'a)> for Series {
    fn as_ref(&self) -> &(dyn SeriesTrait + 'a) {
        self.0.as_ref()
    }
}

impl Default for Series {
    fn default() -> Self {
        Int64Chunked::default().into_series()
    }
}

impl<T> AsRef<ChunkedArray<T>> for dyn SeriesTrait + '_
where
    T: 'static + PolarsDataType<IsLogical = FalseT>,
{
    fn as_ref(&self) -> &ChunkedArray<T> {
        // @NOTE: SeriesTrait `as_any` returns a std::any::Any for the underlying ChunkedArray /
        // Logical (so not the SeriesWrap).
        let Some(ca) = self.as_any().downcast_ref::<ChunkedArray<T>>() else {
            panic!(
                "implementation error, cannot get ref {:?} from {:?}",
                T::get_dtype(),
                self.dtype()
            );
        };

        ca
    }
}

impl<T> AsMut<ChunkedArray<T>> for dyn SeriesTrait + '_
where
    T: 'static + PolarsDataType<IsLogical = FalseT>,
{
    fn as_mut(&mut self) -> &mut ChunkedArray<T> {
        if !self.as_any_mut().is::<ChunkedArray<T>>() {
            panic!(
                "implementation error, cannot get ref {:?} from {:?}",
                T::get_dtype(),
                self.dtype()
            );
        }

        // @NOTE: SeriesTrait `as_any` returns a std::any::Any for the underlying ChunkedArray /
        // Logical (so not the SeriesWrap).
        self.as_any_mut().downcast_mut::<ChunkedArray<T>>().unwrap()
    }
}

#[cfg(test)]
mod test {
    use crate::prelude::*;
    use crate::series::*;

    #[test]
    fn cast() {
        let ar = UInt32Chunked::new("a".into(), &[1, 2]);
        let s = ar.into_series();
        let s2 = s.cast(&DataType::Int64).unwrap();

        assert!(s2.i64().is_ok());
        let s2 = s.cast(&DataType::Float32).unwrap();
        assert!(s2.f32().is_ok());
    }

    #[test]
    fn new_series() {
        let _ = Series::new("boolean series".into(), &vec![true, false, true]);
        let _ = Series::new("int series".into(), &[1, 2, 3]);
        let ca = Int32Chunked::new("a".into(), &[1, 2, 3]);
        let _ = ca.into_series();
    }

    #[test]
    #[cfg(feature = "dtype-date")]
    fn roundtrip_list_logical_20311() {
        let list = ListChunked::from_chunk_iter(
            PlSmallStr::from_static("a"),
            [ListArray::new(
                ArrowDataType::LargeList(Box::new(ArrowField::new(
                    PlSmallStr::from_static("item"),
                    ArrowDataType::Int32,
                    true,
                ))),
                unsafe { Offsets::new_unchecked(vec![0, 1]) }.into(),
                PrimitiveArray::new(ArrowDataType::Int32, vec![1i32].into(), None).to_boxed(),
                None,
            )],
        );
        let list = unsafe { list.from_physical_unchecked(DataType::Date) }.unwrap();
        assert_eq!(list.dtype(), &DataType::List(Box::new(DataType::Date)));
    }

    #[test]
    #[cfg(feature = "dtype-struct")]
    fn new_series_from_empty_structs() {
        let dtype = DataType::Struct(vec![]);
        let empties = vec![AnyValue::StructOwned(Box::new((vec![], vec![]))); 3];
        let s = Series::from_any_values_and_dtype("".into(), &empties, &dtype, false).unwrap();
        assert_eq!(s.len(), 3);
    }
    #[test]
    fn new_series_from_arrow_primitive_array() {
        let array = UInt32Array::from_slice([1, 2, 3, 4, 5]);
        let array_ref: ArrayRef = Box::new(array);

        let _ = Series::try_new("foo".into(), array_ref).unwrap();
    }

    #[test]
    fn series_append() {
        let mut s1 = Series::new("a".into(), &[1, 2]);
        let s2 = Series::new("b".into(), &[3]);
        s1.append(&s2).unwrap();
        assert_eq!(s1.len(), 3);

        // add wrong type
        let s2 = Series::new("b".into(), &[3.0]);
        assert!(s1.append(&s2).is_err())
    }

    #[test]
    #[cfg(feature = "dtype-decimal")]
    fn series_append_decimal() {
        let s1 = Series::new("a".into(), &[1.1, 2.3])
            .cast(&DataType::Decimal(None, Some(2)))
            .unwrap();
        let s2 = Series::new("b".into(), &[3])
            .cast(&DataType::Decimal(None, Some(0)))
            .unwrap();

        {
            let mut s1 = s1.clone();
            s1.append(&s2).unwrap();
            assert_eq!(s1.len(), 3);
            assert_eq!(s1.get(2).unwrap(), AnyValue::Decimal(300, 2));
        }

        {
            let mut s2 = s2.clone();
            s2.extend(&s1).unwrap();
            assert_eq!(s2.get(2).unwrap(), AnyValue::Decimal(2, 0));
        }
    }

    #[test]
    fn series_slice_works() {
        let series = Series::new("a".into(), &[1i64, 2, 3, 4, 5]);

        let slice_1 = series.slice(-3, 3);
        let slice_2 = series.slice(-5, 5);
        let slice_3 = series.slice(0, 5);

        assert_eq!(slice_1.get(0).unwrap(), AnyValue::Int64(3));
        assert_eq!(slice_2.get(0).unwrap(), AnyValue::Int64(1));
        assert_eq!(slice_3.get(0).unwrap(), AnyValue::Int64(1));
    }

    #[test]
    fn out_of_range_slice_does_not_panic() {
        let series = Series::new("a".into(), &[1i64, 2, 3, 4, 5]);

        let _ = series.slice(-3, 4);
        let _ = series.slice(-6, 2);
        let _ = series.slice(4, 2);
    }
}