polars_io/cloud/polars_object_store.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
use std::ops::Range;
use std::sync::Arc;
use bytes::Bytes;
use futures::{StreamExt, TryStreamExt};
use object_store::path::Path;
use object_store::{ObjectMeta, ObjectStore};
use polars_core::prelude::{InitHashMaps, PlHashMap};
use polars_error::{to_compute_err, PolarsError, PolarsResult};
use tokio::io::AsyncWriteExt;
use crate::pl_async::{
self, get_concurrency_limit, get_download_chunk_size, tune_with_concurrency_budget,
with_concurrency_budget, MAX_BUDGET_PER_REQUEST,
};
/// Polars specific wrapper for `Arc<dyn ObjectStore>` that limits the number of
/// concurrent requests for the entire application.
#[derive(Debug, Clone)]
pub struct PolarsObjectStore(Arc<dyn ObjectStore>);
pub type ObjectStorePath = object_store::path::Path;
impl PolarsObjectStore {
pub fn new(store: Arc<dyn ObjectStore>) -> Self {
Self(store)
}
/// Returns a buffered stream that downloads concurrently up to the concurrency limit.
fn get_buffered_ranges_stream<'a, T: Iterator<Item = Range<usize>>>(
&'a self,
path: &'a Path,
ranges: T,
) -> impl StreamExt<Item = PolarsResult<Bytes>>
+ TryStreamExt<Ok = Bytes, Error = PolarsError, Item = PolarsResult<Bytes>>
+ use<'a, T> {
futures::stream::iter(
ranges
.map(|range| async { self.0.get_range(path, range).await.map_err(to_compute_err) }),
)
// Add a limit locally as this gets run inside a single `tune_with_concurrency_budget`.
.buffered(get_concurrency_limit() as usize)
}
pub async fn get_range(&self, path: &Path, range: Range<usize>) -> PolarsResult<Bytes> {
let parts = split_range(range.clone());
if parts.len() == 1 {
tune_with_concurrency_budget(1, || self.0.get_range(path, range))
.await
.map_err(to_compute_err)
} else {
let parts = tune_with_concurrency_budget(
parts.len().clamp(0, MAX_BUDGET_PER_REQUEST) as u32,
|| {
self.get_buffered_ranges_stream(path, parts)
.try_collect::<Vec<Bytes>>()
},
)
.await?;
let mut combined = Vec::with_capacity(range.len());
for part in parts {
combined.extend_from_slice(&part)
}
assert_eq!(combined.len(), range.len());
PolarsResult::Ok(Bytes::from(combined))
}
}
/// Fetch byte ranges into a HashMap keyed by the range start. This will mutably sort the
/// `ranges` slice for coalescing.
///
/// # Panics
/// Panics if the same range start is used by more than 1 range.
pub async fn get_ranges_sort<
K: TryFrom<usize, Error = impl std::fmt::Debug> + std::hash::Hash + Eq,
T: From<Bytes>,
>(
&self,
path: &Path,
ranges: &mut [Range<usize>],
) -> PolarsResult<PlHashMap<K, T>> {
if ranges.is_empty() {
return Ok(Default::default());
}
let mut out = PlHashMap::with_capacity(ranges.len());
ranges.sort_unstable_by_key(|x| x.start);
let (merged_ranges, merged_ends): (Vec<_>, Vec<_>) = merge_ranges(ranges).unzip();
let mut stream = self.get_buffered_ranges_stream(path, merged_ranges.iter().cloned());
tune_with_concurrency_budget(
merged_ranges.len().clamp(0, MAX_BUDGET_PER_REQUEST) as u32,
|| async {
let mut len = 0;
let mut current_offset = 0;
let mut ends_iter = merged_ends.iter();
let mut splitted_parts = vec![];
while let Some(bytes) = stream.try_next().await? {
len += bytes.len();
let end = *ends_iter.next().unwrap();
if end == 0 {
splitted_parts.push(bytes);
continue;
}
let full_range = ranges[current_offset..end]
.iter()
.cloned()
.reduce(|l, r| l.start.min(r.start)..l.end.max(r.end))
.unwrap();
let bytes = if splitted_parts.is_empty() {
bytes
} else {
let mut out = Vec::with_capacity(full_range.len());
for x in splitted_parts.drain(..) {
out.extend_from_slice(&x);
}
out.extend_from_slice(&bytes);
Bytes::from(out)
};
assert_eq!(bytes.len(), full_range.len());
for range in &ranges[current_offset..end] {
let v = out.insert(
K::try_from(range.start).unwrap(),
T::from(bytes.slice(
range.start - full_range.start..range.end - full_range.start,
)),
);
assert!(v.is_none()); // duplicate range start
}
current_offset = end;
}
assert!(splitted_parts.is_empty());
PolarsResult::Ok(pl_async::Size::from(len as u64))
},
)
.await?;
Ok(out)
}
pub async fn download(&self, path: &Path, file: &mut tokio::fs::File) -> PolarsResult<()> {
let opt_size = self.head(path).await.ok().map(|x| x.size);
let parts = opt_size.map(|x| split_range(0..x)).filter(|x| x.len() > 1);
if let Some(parts) = parts {
tune_with_concurrency_budget(
parts.len().clamp(0, MAX_BUDGET_PER_REQUEST) as u32,
|| async {
let mut stream = self.get_buffered_ranges_stream(path, parts);
let mut len = 0;
while let Some(bytes) = stream.try_next().await? {
len += bytes.len();
file.write_all(&bytes).await.map_err(to_compute_err)?;
}
assert_eq!(len, opt_size.unwrap());
PolarsResult::Ok(pl_async::Size::from(len as u64))
},
)
.await?
} else {
tune_with_concurrency_budget(1, || async {
let mut stream = self
.0
.get(path)
.await
.map_err(to_compute_err)?
.into_stream();
let mut len = 0;
while let Some(bytes) = stream.try_next().await? {
len += bytes.len();
file.write_all(&bytes).await.map_err(to_compute_err)?;
}
PolarsResult::Ok(pl_async::Size::from(len as u64))
})
.await?
};
// Dropping is delayed for tokio async files so we need to explicitly
// flush here (https://github.com/tokio-rs/tokio/issues/2307#issuecomment-596336451).
file.sync_all().await.map_err(PolarsError::from)?;
Ok(())
}
/// Fetch the metadata of the parquet file, do not memoize it.
pub async fn head(&self, path: &Path) -> PolarsResult<ObjectMeta> {
with_concurrency_budget(1, || async {
let head_result = self.0.head(path).await;
if head_result.is_err() {
// Pre-signed URLs forbid the HEAD method, but we can still retrieve the header
// information with a range 0-0 request.
let get_range_0_0_result = self
.0
.get_opts(
path,
object_store::GetOptions {
range: Some((0..1).into()),
..Default::default()
},
)
.await;
if let Ok(v) = get_range_0_0_result {
return Ok(v.meta);
}
}
head_result
})
.await
.map_err(to_compute_err)
}
}
/// Splits a single range into multiple smaller ranges, which can be downloaded concurrently for
/// much higher throughput.
fn split_range(range: Range<usize>) -> impl ExactSizeIterator<Item = Range<usize>> {
let chunk_size = get_download_chunk_size();
// Calculate n_parts such that we are as close as possible to the `chunk_size`.
let n_parts = [
(range.len().div_ceil(chunk_size)).max(1),
(range.len() / chunk_size).max(1),
]
.into_iter()
.min_by_key(|x| (range.len() / *x).abs_diff(chunk_size))
.unwrap();
let chunk_size = (range.len() / n_parts).max(1);
assert_eq!(n_parts, (range.len() / chunk_size).max(1));
let bytes_rem = range.len() % chunk_size;
(0..n_parts).map(move |part_no| {
let (start, end) = if part_no == 0 {
// Download remainder length in the first chunk since it starts downloading first.
let end = range.start + chunk_size + bytes_rem;
let end = if end > range.end { range.end } else { end };
(range.start, end)
} else {
let start = bytes_rem + range.start + part_no * chunk_size;
(start, start + chunk_size)
};
start..end
})
}
/// Note: For optimal performance, `ranges` should be sorted. More generally,
/// ranges placed next to each other should also be close in range value.
///
/// # Returns
/// `[(range1, end1), (range2, end2)]`, where:
/// * `range1` contains bytes for the ranges from `ranges[0..end1]`
/// * `range2` contains bytes for the ranges from `ranges[end1..end2]`
/// * etc..
///
/// Note that if an end value is 0, it means the range is a splitted part and should be combined.
fn merge_ranges(ranges: &[Range<usize>]) -> impl Iterator<Item = (Range<usize>, usize)> + '_ {
let chunk_size = get_download_chunk_size();
let mut current_merged_range = ranges.first().map_or(0..0, Clone::clone);
// Number of fetched bytes excluding excess.
let mut current_n_bytes = current_merged_range.len();
(0..ranges.len())
.filter_map(move |current_idx| {
let current_idx = 1 + current_idx;
if current_idx == ranges.len() {
// No more items - flush current state.
Some((current_merged_range.clone(), current_idx))
} else {
let range = ranges[current_idx].clone();
let new_merged = current_merged_range.start.min(range.start)
..current_merged_range.end.max(range.end);
// E.g.:
// |--------|
// oo // range1
// oo // range2
// ^^^ // distance = 3, is_overlapping = false
// E.g.:
// |--------|
// ooooo // range1
// ooooo // range2
// ^^ // distance = 2, is_overlapping = true
let (distance, is_overlapping) = {
let l = current_merged_range.end.min(range.end);
let r = current_merged_range.start.max(range.start);
(r.abs_diff(l), r < l)
};
let should_merge = is_overlapping || {
let leq_current_len_dist_to_chunk_size = new_merged.len().abs_diff(chunk_size)
<= current_merged_range.len().abs_diff(chunk_size);
let gap_tolerance =
(current_n_bytes.max(range.len()) / 8).clamp(1024 * 1024, 8 * 1024 * 1024);
leq_current_len_dist_to_chunk_size && distance <= gap_tolerance
};
if should_merge {
// Merge to existing range
current_merged_range = new_merged;
current_n_bytes += if is_overlapping {
range.len() - distance
} else {
range.len()
};
None
} else {
let out = (current_merged_range.clone(), current_idx);
current_merged_range = range;
current_n_bytes = current_merged_range.len();
Some(out)
}
}
})
.flat_map(|x| {
// Split large individual ranges within the list of ranges.
let (range, end) = x;
let split = split_range(range.clone());
let len = split.len();
split
.enumerate()
.map(move |(i, range)| (range, if 1 + i == len { end } else { 0 }))
})
}
#[cfg(test)]
mod tests {
#[test]
fn test_split_range() {
use super::{get_download_chunk_size, split_range};
let chunk_size = get_download_chunk_size();
assert_eq!(chunk_size, 64 * 1024 * 1024);
#[allow(clippy::single_range_in_vec_init)]
{
// Round-trip empty ranges.
assert_eq!(split_range(0..0).collect::<Vec<_>>(), [0..0]);
assert_eq!(split_range(3..3).collect::<Vec<_>>(), [3..3]);
}
// Threshold to start splitting to 2 ranges
//
// n - chunk_size == chunk_size - n / 2
// n + n / 2 == 2 * chunk_size
// 3 * n == 4 * chunk_size
// n = 4 * chunk_size / 3
let n = 4 * chunk_size / 3;
#[allow(clippy::single_range_in_vec_init)]
{
assert_eq!(split_range(0..n).collect::<Vec<_>>(), [0..89478485]);
}
assert_eq!(
split_range(0..n + 1).collect::<Vec<_>>(),
[0..44739243, 44739243..89478486]
);
// Threshold to start splitting to 3 ranges
//
// n / 2 - chunk_size == chunk_size - n / 3
// n / 2 + n / 3 == 2 * chunk_size
// 5 * n == 12 * chunk_size
// n == 12 * chunk_size / 5
let n = 12 * chunk_size / 5;
assert_eq!(
split_range(0..n).collect::<Vec<_>>(),
[0..80530637, 80530637..161061273]
);
assert_eq!(
split_range(0..n + 1).collect::<Vec<_>>(),
[0..53687092, 53687092..107374183, 107374183..161061274]
);
}
#[test]
fn test_merge_ranges() {
use super::{get_download_chunk_size, merge_ranges};
let chunk_size = get_download_chunk_size();
assert_eq!(chunk_size, 64 * 1024 * 1024);
// Round-trip empty slice
assert_eq!(merge_ranges(&[]).collect::<Vec<_>>(), []);
// We have 1 tiny request followed by 1 huge request. They are combined as it reduces the
// `abs_diff()` to the `chunk_size`, but afterwards they are split to 2 evenly sized
// requests.
assert_eq!(
merge_ranges(&[0..1, 1..127 * 1024 * 1024]).collect::<Vec<_>>(),
[(0..66584576, 0), (66584576..133169152, 2)]
);
// <= 1MiB gap, merge
assert_eq!(
merge_ranges(&[0..1, 1024 * 1024 + 1..1024 * 1024 + 2]).collect::<Vec<_>>(),
[(0..1048578, 2)]
);
// > 1MiB gap, do not merge
assert_eq!(
merge_ranges(&[0..1, 1024 * 1024 + 2..1024 * 1024 + 3]).collect::<Vec<_>>(),
[(0..1, 1), (1048578..1048579, 2)]
);
// <= 12.5% gap, merge
assert_eq!(
merge_ranges(&[0..8, 10..11]).collect::<Vec<_>>(),
[(0..11, 2)]
);
// <= 12.5% gap relative to RHS, merge
assert_eq!(
merge_ranges(&[0..1, 3..11]).collect::<Vec<_>>(),
[(0..11, 2)]
);
// Overlapping range, merge
assert_eq!(
merge_ranges(&[0..80 * 1024 * 1024, 10 * 1024 * 1024..70 * 1024 * 1024])
.collect::<Vec<_>>(),
[(0..80 * 1024 * 1024, 2)]
);
}
}