polars_io/cloud/
polars_object_store.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
use std::ops::Range;
use std::sync::Arc;

use bytes::Bytes;
use futures::{StreamExt, TryStreamExt};
use object_store::path::Path;
use object_store::{ObjectMeta, ObjectStore};
use polars_core::prelude::{InitHashMaps, PlHashMap};
use polars_error::{to_compute_err, PolarsError, PolarsResult};
use tokio::io::AsyncWriteExt;

use crate::pl_async::{
    self, get_concurrency_limit, get_download_chunk_size, tune_with_concurrency_budget,
    with_concurrency_budget, MAX_BUDGET_PER_REQUEST,
};

/// Polars specific wrapper for `Arc<dyn ObjectStore>` that limits the number of
/// concurrent requests for the entire application.
#[derive(Debug, Clone)]
pub struct PolarsObjectStore(Arc<dyn ObjectStore>);
pub type ObjectStorePath = object_store::path::Path;

impl PolarsObjectStore {
    pub fn new(store: Arc<dyn ObjectStore>) -> Self {
        Self(store)
    }

    /// Returns a buffered stream that downloads concurrently up to the concurrency limit.
    fn get_buffered_ranges_stream<'a, T: Iterator<Item = Range<usize>>>(
        &'a self,
        path: &'a Path,
        ranges: T,
    ) -> impl StreamExt<Item = PolarsResult<Bytes>>
           + TryStreamExt<Ok = Bytes, Error = PolarsError, Item = PolarsResult<Bytes>>
           + use<'a, T> {
        futures::stream::iter(
            ranges
                .map(|range| async { self.0.get_range(path, range).await.map_err(to_compute_err) }),
        )
        // Add a limit locally as this gets run inside a single `tune_with_concurrency_budget`.
        .buffered(get_concurrency_limit() as usize)
    }

    pub async fn get_range(&self, path: &Path, range: Range<usize>) -> PolarsResult<Bytes> {
        let parts = split_range(range.clone());

        if parts.len() == 1 {
            tune_with_concurrency_budget(1, || self.0.get_range(path, range))
                .await
                .map_err(to_compute_err)
        } else {
            let parts = tune_with_concurrency_budget(
                parts.len().clamp(0, MAX_BUDGET_PER_REQUEST) as u32,
                || {
                    self.get_buffered_ranges_stream(path, parts)
                        .try_collect::<Vec<Bytes>>()
                },
            )
            .await?;

            let mut combined = Vec::with_capacity(range.len());

            for part in parts {
                combined.extend_from_slice(&part)
            }

            assert_eq!(combined.len(), range.len());

            PolarsResult::Ok(Bytes::from(combined))
        }
    }

    /// Fetch byte ranges into a HashMap keyed by the range start. This will mutably sort the
    /// `ranges` slice for coalescing.
    ///
    /// # Panics
    /// Panics if the same range start is used by more than 1 range.
    pub async fn get_ranges_sort<
        K: TryFrom<usize, Error = impl std::fmt::Debug> + std::hash::Hash + Eq,
        T: From<Bytes>,
    >(
        &self,
        path: &Path,
        ranges: &mut [Range<usize>],
    ) -> PolarsResult<PlHashMap<K, T>> {
        if ranges.is_empty() {
            return Ok(Default::default());
        }

        let mut out = PlHashMap::with_capacity(ranges.len());

        ranges.sort_unstable_by_key(|x| x.start);

        let (merged_ranges, merged_ends): (Vec<_>, Vec<_>) = merge_ranges(ranges).unzip();

        let mut stream = self.get_buffered_ranges_stream(path, merged_ranges.iter().cloned());

        tune_with_concurrency_budget(
            merged_ranges.len().clamp(0, MAX_BUDGET_PER_REQUEST) as u32,
            || async {
                let mut len = 0;
                let mut current_offset = 0;
                let mut ends_iter = merged_ends.iter();

                let mut splitted_parts = vec![];

                while let Some(bytes) = stream.try_next().await? {
                    len += bytes.len();
                    let end = *ends_iter.next().unwrap();

                    if end == 0 {
                        splitted_parts.push(bytes);
                        continue;
                    }

                    let full_range = ranges[current_offset..end]
                        .iter()
                        .cloned()
                        .reduce(|l, r| l.start.min(r.start)..l.end.max(r.end))
                        .unwrap();

                    let bytes = if splitted_parts.is_empty() {
                        bytes
                    } else {
                        let mut out = Vec::with_capacity(full_range.len());

                        for x in splitted_parts.drain(..) {
                            out.extend_from_slice(&x);
                        }

                        out.extend_from_slice(&bytes);
                        Bytes::from(out)
                    };

                    assert_eq!(bytes.len(), full_range.len());

                    for range in &ranges[current_offset..end] {
                        let v = out.insert(
                            K::try_from(range.start).unwrap(),
                            T::from(bytes.slice(
                                range.start - full_range.start..range.end - full_range.start,
                            )),
                        );

                        assert!(v.is_none()); // duplicate range start
                    }

                    current_offset = end;
                }

                assert!(splitted_parts.is_empty());

                PolarsResult::Ok(pl_async::Size::from(len as u64))
            },
        )
        .await?;

        Ok(out)
    }

    pub async fn download(&self, path: &Path, file: &mut tokio::fs::File) -> PolarsResult<()> {
        let opt_size = self.head(path).await.ok().map(|x| x.size);
        let parts = opt_size.map(|x| split_range(0..x)).filter(|x| x.len() > 1);

        if let Some(parts) = parts {
            tune_with_concurrency_budget(
                parts.len().clamp(0, MAX_BUDGET_PER_REQUEST) as u32,
                || async {
                    let mut stream = self.get_buffered_ranges_stream(path, parts);
                    let mut len = 0;
                    while let Some(bytes) = stream.try_next().await? {
                        len += bytes.len();
                        file.write_all(&bytes).await.map_err(to_compute_err)?;
                    }

                    assert_eq!(len, opt_size.unwrap());

                    PolarsResult::Ok(pl_async::Size::from(len as u64))
                },
            )
            .await?
        } else {
            tune_with_concurrency_budget(1, || async {
                let mut stream = self
                    .0
                    .get(path)
                    .await
                    .map_err(to_compute_err)?
                    .into_stream();

                let mut len = 0;
                while let Some(bytes) = stream.try_next().await? {
                    len += bytes.len();
                    file.write_all(&bytes).await.map_err(to_compute_err)?;
                }

                PolarsResult::Ok(pl_async::Size::from(len as u64))
            })
            .await?
        };

        // Dropping is delayed for tokio async files so we need to explicitly
        // flush here (https://github.com/tokio-rs/tokio/issues/2307#issuecomment-596336451).
        file.sync_all().await.map_err(PolarsError::from)?;

        Ok(())
    }

    /// Fetch the metadata of the parquet file, do not memoize it.
    pub async fn head(&self, path: &Path) -> PolarsResult<ObjectMeta> {
        with_concurrency_budget(1, || async {
            let head_result = self.0.head(path).await;

            if head_result.is_err() {
                // Pre-signed URLs forbid the HEAD method, but we can still retrieve the header
                // information with a range 0-0 request.
                let get_range_0_0_result = self
                    .0
                    .get_opts(
                        path,
                        object_store::GetOptions {
                            range: Some((0..1).into()),
                            ..Default::default()
                        },
                    )
                    .await;

                if let Ok(v) = get_range_0_0_result {
                    return Ok(v.meta);
                }
            }

            head_result
        })
        .await
        .map_err(to_compute_err)
    }
}

/// Splits a single range into multiple smaller ranges, which can be downloaded concurrently for
/// much higher throughput.
fn split_range(range: Range<usize>) -> impl ExactSizeIterator<Item = Range<usize>> {
    let chunk_size = get_download_chunk_size();

    // Calculate n_parts such that we are as close as possible to the `chunk_size`.
    let n_parts = [
        (range.len().div_ceil(chunk_size)).max(1),
        (range.len() / chunk_size).max(1),
    ]
    .into_iter()
    .min_by_key(|x| (range.len() / *x).abs_diff(chunk_size))
    .unwrap();

    let chunk_size = (range.len() / n_parts).max(1);

    assert_eq!(n_parts, (range.len() / chunk_size).max(1));
    let bytes_rem = range.len() % chunk_size;

    (0..n_parts).map(move |part_no| {
        let (start, end) = if part_no == 0 {
            // Download remainder length in the first chunk since it starts downloading first.
            let end = range.start + chunk_size + bytes_rem;
            let end = if end > range.end { range.end } else { end };
            (range.start, end)
        } else {
            let start = bytes_rem + range.start + part_no * chunk_size;
            (start, start + chunk_size)
        };

        start..end
    })
}

/// Note: For optimal performance, `ranges` should be sorted. More generally,
/// ranges placed next to each other should also be close in range value.
///
/// # Returns
/// `[(range1, end1), (range2, end2)]`, where:
/// * `range1` contains bytes for the ranges from `ranges[0..end1]`
/// * `range2` contains bytes for the ranges from `ranges[end1..end2]`
/// * etc..
///
/// Note that if an end value is 0, it means the range is a splitted part and should be combined.
fn merge_ranges(ranges: &[Range<usize>]) -> impl Iterator<Item = (Range<usize>, usize)> + '_ {
    let chunk_size = get_download_chunk_size();

    let mut current_merged_range = ranges.first().map_or(0..0, Clone::clone);
    // Number of fetched bytes excluding excess.
    let mut current_n_bytes = current_merged_range.len();

    (0..ranges.len())
        .filter_map(move |current_idx| {
            let current_idx = 1 + current_idx;

            if current_idx == ranges.len() {
                // No more items - flush current state.
                Some((current_merged_range.clone(), current_idx))
            } else {
                let range = ranges[current_idx].clone();

                let new_merged = current_merged_range.start.min(range.start)
                    ..current_merged_range.end.max(range.end);

                // E.g.:
                // |--------|
                //  oo        // range1
                //       oo   // range2
                //    ^^^     // distance = 3, is_overlapping = false
                // E.g.:
                // |--------|
                //  ooooo     // range1
                //     ooooo  // range2
                //     ^^     // distance = 2, is_overlapping = true
                let (distance, is_overlapping) = {
                    let l = current_merged_range.end.min(range.end);
                    let r = current_merged_range.start.max(range.start);

                    (r.abs_diff(l), r < l)
                };

                let should_merge = is_overlapping || {
                    let leq_current_len_dist_to_chunk_size = new_merged.len().abs_diff(chunk_size)
                        <= current_merged_range.len().abs_diff(chunk_size);
                    let gap_tolerance =
                        (current_n_bytes.max(range.len()) / 8).clamp(1024 * 1024, 8 * 1024 * 1024);

                    leq_current_len_dist_to_chunk_size && distance <= gap_tolerance
                };

                if should_merge {
                    // Merge to existing range
                    current_merged_range = new_merged;
                    current_n_bytes += if is_overlapping {
                        range.len() - distance
                    } else {
                        range.len()
                    };
                    None
                } else {
                    let out = (current_merged_range.clone(), current_idx);
                    current_merged_range = range;
                    current_n_bytes = current_merged_range.len();
                    Some(out)
                }
            }
        })
        .flat_map(|x| {
            // Split large individual ranges within the list of ranges.
            let (range, end) = x;
            let split = split_range(range.clone());
            let len = split.len();

            split
                .enumerate()
                .map(move |(i, range)| (range, if 1 + i == len { end } else { 0 }))
        })
}

#[cfg(test)]
mod tests {

    #[test]
    fn test_split_range() {
        use super::{get_download_chunk_size, split_range};

        let chunk_size = get_download_chunk_size();

        assert_eq!(chunk_size, 64 * 1024 * 1024);

        #[allow(clippy::single_range_in_vec_init)]
        {
            // Round-trip empty ranges.
            assert_eq!(split_range(0..0).collect::<Vec<_>>(), [0..0]);
            assert_eq!(split_range(3..3).collect::<Vec<_>>(), [3..3]);
        }

        // Threshold to start splitting to 2 ranges
        //
        // n - chunk_size == chunk_size - n / 2
        // n + n / 2 == 2 * chunk_size
        // 3 * n == 4 * chunk_size
        // n = 4 * chunk_size / 3
        let n = 4 * chunk_size / 3;

        #[allow(clippy::single_range_in_vec_init)]
        {
            assert_eq!(split_range(0..n).collect::<Vec<_>>(), [0..89478485]);
        }

        assert_eq!(
            split_range(0..n + 1).collect::<Vec<_>>(),
            [0..44739243, 44739243..89478486]
        );

        // Threshold to start splitting to 3 ranges
        //
        // n / 2 - chunk_size == chunk_size - n / 3
        // n / 2 + n / 3 == 2 * chunk_size
        // 5 * n == 12 * chunk_size
        // n == 12 * chunk_size / 5
        let n = 12 * chunk_size / 5;

        assert_eq!(
            split_range(0..n).collect::<Vec<_>>(),
            [0..80530637, 80530637..161061273]
        );

        assert_eq!(
            split_range(0..n + 1).collect::<Vec<_>>(),
            [0..53687092, 53687092..107374183, 107374183..161061274]
        );
    }

    #[test]
    fn test_merge_ranges() {
        use super::{get_download_chunk_size, merge_ranges};

        let chunk_size = get_download_chunk_size();

        assert_eq!(chunk_size, 64 * 1024 * 1024);

        // Round-trip empty slice
        assert_eq!(merge_ranges(&[]).collect::<Vec<_>>(), []);

        // We have 1 tiny request followed by 1 huge request. They are combined as it reduces the
        // `abs_diff()` to the `chunk_size`, but afterwards they are split to 2 evenly sized
        // requests.
        assert_eq!(
            merge_ranges(&[0..1, 1..127 * 1024 * 1024]).collect::<Vec<_>>(),
            [(0..66584576, 0), (66584576..133169152, 2)]
        );

        // <= 1MiB gap, merge
        assert_eq!(
            merge_ranges(&[0..1, 1024 * 1024 + 1..1024 * 1024 + 2]).collect::<Vec<_>>(),
            [(0..1048578, 2)]
        );

        // > 1MiB gap, do not merge
        assert_eq!(
            merge_ranges(&[0..1, 1024 * 1024 + 2..1024 * 1024 + 3]).collect::<Vec<_>>(),
            [(0..1, 1), (1048578..1048579, 2)]
        );

        // <= 12.5% gap, merge
        assert_eq!(
            merge_ranges(&[0..8, 10..11]).collect::<Vec<_>>(),
            [(0..11, 2)]
        );

        // <= 12.5% gap relative to RHS, merge
        assert_eq!(
            merge_ranges(&[0..1, 3..11]).collect::<Vec<_>>(),
            [(0..11, 2)]
        );

        // Overlapping range, merge
        assert_eq!(
            merge_ranges(&[0..80 * 1024 * 1024, 10 * 1024 * 1024..70 * 1024 * 1024])
                .collect::<Vec<_>>(),
            [(0..80 * 1024 * 1024, 2)]
        );
    }
}