1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
//!
//! # Polars Eager cookbook
//!
//! This page should serve a cookbook to quickly get you started with most fundamental operations
//! executed on a [`ChunkedArray`], [`Series`] or [`DataFrame`].
//!
//! [`ChunkedArray`]: crate::chunked_array::ChunkedArray
//! [`Series`]: crate::series::Series
//! [`DataFrame`]: crate::frame::DataFrame
//!
//! ## Tree Of Contents
//!
//! * [Creation of data structures](#creation-of-data-structures)
//! - [ChunkedArray](#chunkedarray)
//! - [Series](#series)
//! - [DataFrame](#dataframe)
//! * [Arithmetic](#arithmetic)
//! * [Comparisons](#comparisons)
//! * [Apply functions/ closures](#apply-functions-closures)
//! - [Series / ChunkedArrays](#dataframe-1)
//! - [DataFrame](#dataframe-1)
//! * [Filter](#filter)
//! * [Sort](#sort)
//! * [Joins](#joins)
//! * [GroupBy](#group_by)
//! - [pivot](#pivot)
//! * [Unpivot](#unpivot)
//! * [Explode](#explode)
//! * [IO](#io)
//! - [Read CSV](#read-csv)
//! - [Write CSV](#write-csv)
//! - [Read IPC](#read-ipc)
//! - [Write IPC](#write-ipc)
//! - [Read Parquet](#read-parquet)
//! - [Write Parquet](#write-parquet)
//! * [Various](#various)
//! - [Replace NaN with Missing](#replace-nan-with-missing)
//! - [Extracting data](#extracting-data)
//!
//! ## Creation of Data structures
//!
//! ### ChunkedArray
//!
//! ```
//! use polars::prelude::*;
//!
//! // use iterators
//! let ca: UInt32Chunked = (0..10).map(Some).collect();
//!
//! // from slices
//! let ca = UInt32Chunked::new("foo".into(), &[1, 2, 3]);
//!
//! // use builders
//! let mut builder = PrimitiveChunkedBuilder::<UInt32Type>::new("foo".into(), 10);
//! for value in 0..10 {
//! builder.append_value(value);
//! }
//! let ca = builder.finish();
//! ```
//!
//! ### Series
//!
//! ```
//! use polars::prelude::*;
//!
//! // use iterators
//! let s: Series = (0..10).map(Some).collect();
//!
//! // from slices
//! let s = Series::new("foo".into(), &[1, 2, 3]);
//!
//! // from a chunked-array
//! let ca = UInt32Chunked::new("foo".into(), &[Some(1), None, Some(3)]);
//! let s = ca.into_series();
//! ```
//!
//! ### DataFrame
//!
//! ```
//! use polars::prelude::*;
//! use polars::df;
//! # fn example() -> PolarsResult<()> {
//!
//! // use macro
//! let df = df! [
//! "names" => ["a", "b", "c"],
//! "values" => [1, 2, 3],
//! "values_nulls" => [Some(1), None, Some(3)]
//! ]?;
//!
//! // from a Vec<Series>
//! let s1 = Series::new("names".into(), &["a", "b", "c"]);
//! let s2 = Series::new("values".into(), &[Some(1), None, Some(3)]);
//! let df = DataFrame::new(vec![s1, s2])?;
//! # Ok(())
//! # }
//! ```
//!
//! ## Arithmetic
//! Arithmetic can be done on both [`Series`] and [`ChunkedArray`]. The most notable difference is that
//! a [`Series`] coerces the data to match the underlying data types.
//!
//! ```
//! use polars::prelude::*;
//! # fn example() -> PolarsResult<()> {
//! let s_int = Series::new("a".into(), &[1, 2, 3]);
//! let s_flt = Series::new("b".into(), &[1.0, 2.0, 3.0]);
//!
//! let added = &s_int + &s_flt;
//! let subtracted = &s_int - &s_flt;
//! let multiplied = &s_int * &s_flt;
//! let divided = &s_int / &s_flt;
//! let moduloed = &s_int % &s_flt;
//!
//!
//! // on chunked-arrays we first need to cast to same types
//! let ca_int = s_int.i32()?;
//! let ca_flt = s_flt.f32()?;
//!
//! ca_int.cast(&DataType::Float32)?.f32()? * ca_flt;
//! ca_flt.cast(&DataType::Int32)?.i32()? * ca_int;
//!
//! // we can also do arithmetic with numeric values
//! let multiplied = ca_int * 2.0;
//! let multiplied = s_flt * 2.0;
//!
//! // or broadcast Series to match the operands type
//! let added = &s_int * &Series::new("broadcast_me".into(), &[10]);
//!
//! # Ok(())
//! # }
//! ```
//!
//! Because Rusts Orphan Rule doesn't allow use to implement left side operations, we need to call
//! such operation directly.
//!
//! ```rust
//! # use polars::prelude::*;
//! let series = Series::new("foo".into(), [1, 2, 3]);
//!
//! // 1 / s
//! let divide_one_by_s = 1.div(&series);
//!
//! // 1 - s
//! let subtract_one_by_s = 1.sub(&series);
//! ```
//!
//! For [`ChunkedArray`] this left hand side operations can be done with the [`apply_values`] method.
//!
//! [`apply_values`]: crate::chunked_array::ops::ChunkApply::apply_values
//!
//! ```rust
//! # use polars::prelude::*;
//! let ca = UInt32Chunked::new("foo".into(), &[1, 2, 3]);
//!
//! // 1 / ca
//! let divide_one_by_ca = ca.apply_values(|rhs| 1 / rhs);
//! ```
//!
//! ## Comparisons
//!
//! [`Series`] and [`ChunkedArray`] can be used in comparison operations to create _boolean_ masks/predicates.
//!
//! ```
//! use polars::prelude::*;
//! # fn example() -> PolarsResult<()> {
//!
//! let s = Series::new("a".into(), &[1, 2, 3]);
//! let ca = UInt32Chunked::new("b".into(), &[Some(3), None, Some(1)]);
//!
//! // compare Series with numeric values
//! // ==
//! s.equal(2);
//! // !=
//! s.not_equal(2);
//! // >
//! s.gt(2);
//! // >=
//! s.gt_eq(2);
//! // <
//! s.lt(2);
//! // <=
//! s.lt_eq(2);
//!
//!
//! // compare Series with Series
//! // ==
//! s.equal(&s);
//! // !=
//! s.not_equal(&s);
//! // >
//! s.gt(&s);
//! // >=
//! s.gt_eq(&s);
//! // <
//! s.lt(&s);
//! // <=
//! s.lt_eq(&s);
//!
//!
//! // compare chunked-array with numeric values
//! // ==
//! ca.equal(2);
//! // !=
//! ca.not_equal(2);
//! // >
//! ca.gt(2);
//! // >=
//! ca.gt_eq(2);
//! // <
//! ca.lt(2);
//! // <=
//! ca.lt_eq(2);
//!
//! // compare chunked-array with chunked-array
//! // ==
//! ca.equal(&ca);
//! // !=
//! ca.not_equal(&ca);
//! // >
//! ca.gt(&ca);
//! // >=
//! ca.gt_eq(&ca);
//! // <
//! ca.lt(&ca);
//! // <=
//! ca.lt_eq(&ca);
//!
//! // use iterators
//! let a: BooleanChunked = ca.iter()
//! .map(|opt_value| {
//! match opt_value {
//! Some(value) => value < 10,
//! None => false
//! }}).collect();
//!
//! # Ok(())
//! # }
//! ```
//!
//!
//! ## Apply functions/ closures
//!
//! See all possible [apply methods here](crate::chunked_array::ops::ChunkApply).
//!
//! ### Series / ChunkedArrays
//!
//! ```
//! use polars::prelude::*;
//! use polars::prelude::arity::unary_elementwise_values;
//! # fn example() -> PolarsResult<()> {
//!
//! // apply a closure over all values
//! let s = Series::new("foo".into(), &[Some(1), Some(2), None]);
//! s.i32()?.apply_values(|value| value * 20);
//!
//! // count string lengths
//! let s = Series::new("foo".into(), &["foo", "bar", "foobar"]);
//! unary_elementwise_values(s.str()?, |str_val| str_val.len() as u64);
//!
//! # Ok(())
//! # }
//! ```
//!
//!
//! ### Multiple columns
//!
//! ```
//! use polars::prelude::*;
//! fn my_black_box_function(a: f32, b: f32) -> f32 {
//! // do something
//! a
//! }
//!
//! fn apply_multiples(col_a: &Series, col_b: &Series) -> Float32Chunked {
//! match (col_a.dtype(), col_b.dtype()) {
//! (DataType::Float32, DataType::Float32) => {
//! // downcast to `ChunkedArray`
//! let a = col_a.f32().unwrap();
//! let b = col_b.f32().unwrap();
//!
//! a.into_iter()
//! .zip(b.into_iter())
//! .map(|(opt_a, opt_b)| match (opt_a, opt_b) {
//! (Some(a), Some(b)) => Some(my_black_box_function(a, b)),
//! // if any of the two value is `None` we propagate that null
//! _ => None,
//! })
//! .collect()
//! }
//! _ => panic!("unexpected dtypes"),
//! }
//! }
//! ```
//!
//! ### DataFrame
//!
//! ```
//! use polars::prelude::*;
//! use polars::df;
//! # fn example() -> PolarsResult<()> {
//!
//! let mut df = df![
//! "letters" => ["a", "b", "c", "d"],
//! "numbers" => [1, 2, 3, 4]
//! ]?;
//!
//!
//! // coerce numbers to floats
//! df.try_apply("number", |s: &Series| s.cast(&DataType::Float64))?;
//!
//! // transform letters to uppercase letters
//! df.try_apply("letters", |s: &Series| {
//! Ok(s.str()?.to_uppercase())
//! });
//!
//! # Ok(())
//! # }
//! ```
//!
//! ## Filter
//! ```
//! use polars::prelude::*;
//!
//! # fn example(df: &DataFrame) -> PolarsResult<()> {
//! // create a mask to filter out null values
//! let mask = df.column("sepal_width")?.is_not_null();
//!
//! // select column
//! let s = df.column("sepal_length")?;
//!
//! // apply filter on a Series
//! let filtered_series = s.filter(&mask);
//!
//! // apply the filter on a DataFrame
//! let filtered_df = df.filter(&mask)?;
//!
//! # Ok(())
//! # }
//! ```
//!
//! ## Sort
//! ```
//! use polars::prelude::*;
//! use polars::df;
//!
//! # fn example() -> PolarsResult<()> {
//! let df = df![
//! "a" => [1, 2, 3],
//! "b" => ["a", "a", "b"]
//! ]?;
//! // sort this DataFrame by multiple columns
//!
//! // ordering of the columns
//! let descending = vec![true, false];
//! // columns to sort by
//! let by = &["b", "a"];
//! // do the sort operation
//! let sorted = df.sort(by, descending, true)?;
//!
//! // sorted:
//!
//! // ╭─────┬─────╮
//! // │ a ┆ b │
//! // │ --- ┆ --- │
//! // │ i64 ┆ str │
//! // ╞═════╪═════╡
//! // │ 1 ┆ "a" │
//! // │ 2 ┆ "a" │
//! // │ 3 ┆ "b" │
//! // ╰─────┴─────╯
//!
//! # Ok(())
//! # }
//! ```
//!
//! ## Joins
//!
//! ```
//! use polars::prelude::*;
//! use polars::df;
//!
//! # fn example() -> PolarsResult<()> {
//! // Create first df.
//! let temp = df!("days" => &[0, 1, 2, 3, 4],
//! "temp" => &[22.1, 19.9, 7., 2., 3.],
//! "other" => &[1, 2, 3, 4, 5]
//! )?;
//!
//! // Create second df.
//! let rain = df!("days" => &[1, 2],
//! "rain" => &[0.1, 0.2],
//! "other" => &[1, 2, 3, 4, 5]
//! )?;
//!
//! // join on a single column
//! temp.left_join(&rain, ["days"], ["days"]);
//! temp.inner_join(&rain, ["days"], ["days"]);
//! temp.full_join(&rain, ["days"], ["days"]);
//!
//! // join on multiple columns
//! temp.join(&rain, vec!["days", "other"], vec!["days", "other"], JoinArgs::new(JoinType::Left));
//!
//! # Ok(())
//! # }
//! ```
//!
//! ## Groupby
//!
//! Note that Polars lazy is a lot more powerful in and more performant in group_by operations.
//! In lazy a myriad of aggregations can be combined from expressions.
//!
//! See more in:
//!
//! * [Groupby](crate::frame::group_by::GroupBy)
//!
//! ### GroupBy
//! ```
//! use polars::prelude::*;
//!
//! # fn example(df: &DataFrame) -> PolarsResult<()> {
//! // group_by "groups" | sum "foo"
//! let out = df.group_by(["groups"])?
//! .select(["foo"])
//! .sum();
//!
//! # Ok(())
//! # }
//!
//! ```
//!
//! ### Pivot
//!
//! ```
//! use polars::prelude::*;
//! use polars::df;
//!
//! # fn example(df: &DataFrame) -> PolarsResult<()> {
//! let df = df!("foo" => ["A", "A", "B", "B", "C"],
//! "N" => [1, 2, 2, 4, 2],
//! "bar" => ["k", "l", "m", "n", "0"]
//! )?;
//!
//! // group_by "foo" | pivot "bar" column | aggregate "N"
//! let pivoted = pivot::pivot(&df, ["foo"], ["bar"], ["N"], false, Some(first()), None);
//!
//! // pivoted:
//! // +-----+------+------+------+------+------+
//! // | foo | o | n | m | l | k |
//! // | --- | --- | --- | --- | --- | --- |
//! // | str | i32 | i32 | i32 | i32 | i32 |
//! // +=====+======+======+======+======+======+
//! // | "A" | null | null | null | 2 | 1 |
//! // +-----+------+------+------+------+------+
//! // | "B" | null | 4 | 2 | null | null |
//! // +-----+------+------+------+------+------+
//! // | "C" | 2 | null | null | null | null |
//! // +-----+------+------+------+------+------+!
//!
//! # Ok(())
//! # }
//! ```
//!
//! ## Unpivot
//!
//! ```
//! use polars::prelude::*;
//! use polars::df;
//!
//! # fn example(df: &DataFrame) -> PolarsResult<()> {
//! let df = df!["A" => &["a", "b", "a"],
//! "B" => &[1, 3, 5],
//! "C" => &[10, 11, 12],
//! "D" => &[2, 4, 6]
//! ]?;
//!
//! let unpivoted = df.unpivot(&["A", "B"], &["C", "D"]).unwrap();
//! // unpivoted:
//!
//! // +-----+-----+----------+-------+
//! // | A | B | variable | value |
//! // | --- | --- | --- | --- |
//! // | str | i32 | str | i32 |
//! // +=====+=====+==========+=======+
//! // | "a" | 1 | "C" | 10 |
//! // +-----+-----+----------+-------+
//! // | "b" | 3 | "C" | 11 |
//! // +-----+-----+----------+-------+
//! // | "a" | 5 | "C" | 12 |
//! // +-----+-----+----------+-------+
//! // | "a" | 1 | "D" | 2 |
//! // +-----+-----+----------+-------+
//! // | "b" | 3 | "D" | 4 |
//! // +-----+-----+----------+-------+
//! // | "a" | 5 | "D" | 6 |
//! // +-----+-----+----------+-------+
//!
//! # Ok(())
//! # }
//! ```
//!
//! ## Explode
//!
//! ```
//! use polars::prelude::*;
//! use polars::df;
//!
//! # fn example(df: &DataFrame) -> PolarsResult<()> {
//! let s0 = Series::new("a".into(), &[1i64, 2, 3]);
//! let s1 = Series::new("b".into(), &[1i64, 1, 1]);
//! let s2 = Series::new("c".into(), &[2i64, 2, 2]);
//! // construct a new ListChunked for a slice of Series.
//! let list = Series::new("foo", &[s0, s1, s2]);
//!
//! // construct a few more Series.
//! let s0 = Series::new("B".into(), [1, 2, 3]);
//! let s1 = Series::new("C".into(), [1, 1, 1]);
//! let df = DataFrame::new(vec![list, s0, s1])?;
//!
//! let exploded = df.explode(["foo"])?;
//! // exploded:
//!
//! // +-----+-----+-----+
//! // | foo | B | C |
//! // | --- | --- | --- |
//! // | i64 | i32 | i32 |
//! // +=====+=====+=====+
//! // | 1 | 1 | 1 |
//! // +-----+-----+-----+
//! // | 2 | 1 | 1 |
//! // +-----+-----+-----+
//! // | 3 | 1 | 1 |
//! // +-----+-----+-----+
//! // | 1 | 2 | 1 |
//! // +-----+-----+-----+
//! // | 1 | 2 | 1 |
//! // +-----+-----+-----+
//! // | 1 | 2 | 1 |
//! // +-----+-----+-----+
//! // | 2 | 3 | 1 |
//! // +-----+-----+-----+
//! // | 2 | 3 | 1 |
//! // +-----+-----+-----+
//! // | 2 | 3 | 1 |
//! // +-----+-----+-----+
//!
//! # Ok(())
//! # }
//! ```
//!
//! ## IO
//!
//! ### Read CSV
//!
//! ```
//! use polars::prelude::*;
//!
//! # fn example(df: &DataFrame) -> PolarsResult<()> {
//! // read from path
//! let df = CsvReader::from_path("iris_csv")?
//! .infer_schema(None)
//! .has_header(true)
//! .finish()?;
//! # Ok(())
//! # }
//! ```
//!
//! ### Write CSV
//!
//! ```
//! use polars::prelude::*;
//! use std::fs::File;
//!
//! # fn example(df: &mut DataFrame) -> PolarsResult<()> {
//! // create a file
//! let mut file = File::create("example.csv").expect("could not create file");
//!
//! // write DataFrame to file
//! CsvWriter::new(&mut file)
//! .include_header(true)
//! .with_separator(b',')
//! .finish(df);
//! # Ok(())
//! # }
//! ```
//!
//! ### Read IPC
//! ```
//! use polars::prelude::*;
//! use std::fs::File;
//!
//! # fn example(df: &DataFrame) -> PolarsResult<()> {
//! // open file
//! let file = File::open("file.ipc").expect("file not found");
//!
//! // read to DataFrame
//! let df = IpcReader::new(file)
//! .finish()?;
//! # Ok(())
//! # }
//! ```
//!
//! ### Write IPC
//! ```
//! use polars::prelude::*;
//! use std::fs::File;
//!
//! # fn example(df: &mut DataFrame) -> PolarsResult<()> {
//! // create a file
//! let mut file = File::create("file.ipc").expect("could not create file");
//!
//! // write DataFrame to file
//! IpcWriter::new(&mut file)
//! .finish(df)
//! # }
//! ```
//!
//! ### Read Parquet
//!
//! ```
//! use polars::prelude::*;
//! use std::fs::File;
//!
//! # fn example(df: &DataFrame) -> PolarsResult<()> {
//! // open file
//! let file = File::open("some_file.parquet").unwrap();
//!
//! // read to DataFrame
//! let df = ParquetReader::new(file).finish()?;
//! # Ok(())
//! # }
//! ```
//!
//! ### Write Parquet
//! ```
//! use polars::prelude::*;
//! use std::fs::File;
//!
//! # fn example(df: &mut DataFrame) -> PolarsResult<u64> {
//! // create a file
//! let file = File::create("example.parquet").expect("could not create file");
//!
//! ParquetWriter::new(file)
//! .finish(df)
//! # }
//! ```
//!
//! # Various
//!
//! ## Replace NaN with Missing.
//! The floating point [Not a Number: NaN](https://en.wikipedia.org/wiki/NaN) is conceptually different
//! than missing data in Polars. In the snippet below we show how we can replace [`NaN`] values with
//! missing values, by setting them to [`None`].
//!
//! [`NaN`]: https://doc.rust-lang.org/std/primitive.f64.html#associatedconstant.NAN
//!
//! ```
//! use polars::prelude::*;
//! use polars::df;
//!
//! /// Replaces NaN with missing values.
//! fn fill_nan_with_nulls() -> PolarsResult<DataFrame> {
//! let nan = f64::NAN;
//!
//! let mut df = df! {
//! "a" => [nan, 1.0, 2.0],
//! "b" => [nan, 1.0, 2.0]
//! }
//! .unwrap();
//!
//! for idx in 0..df.width() {
//! df.try_apply_at_idx(idx, |series| {
//! let mask = series.is_nan()?;
//! let ca = series.f64()?;
//! ca.set(&mask, None)
//! })?;
//! }
//! Ok(df)
//! }
//! ```
//!
//! ## Extracting data
//!
//! To be able to extract data out of [`Series`], either by iterating over them or converting them
//! to other datatypes like a [`Vec<T>`], we first need to downcast them to a [`ChunkedArray<T>`]. This
//! is needed because we don't know the data type that is hold by the [`Series`].
//!
//! [`ChunkedArray<T>`]: crate::chunked_array::ChunkedArray
//!
//! ```
//! use polars::prelude::*;
//! use polars::df;
//!
//! fn extract_data() -> PolarsResult<()> {
//! let df = df! [
//! "a" => [None, Some(1.0f32), Some(2.0)],
//! "str" => ["foo", "bar", "ham"]
//! ]?;
//!
//! // first extract ChunkedArray to get the inner type.
//! let ca = df.column("a")?.f32()?;
//!
//! // Then convert to vec
//! let to_vec: Vec<Option<f32>> = Vec::from(ca);
//!
//! // We can also do this with iterators
//! let ca = df.column("str")?.str()?;
//! let to_vec: Vec<Option<&str>> = ca.into_iter().collect();
//! let to_vec_no_options: Vec<&str> = ca.into_no_null_iter().collect();
//!
//! Ok(())
//! }
//! ```
//!
//!