1use std::borrow::Cow;
2
3use either::Either;
4
5use super::*;
6
7impl DataFrame {
8 pub(crate) fn transpose_from_dtype(
9 &self,
10 dtype: &DataType,
11 keep_names_as: Option<PlSmallStr>,
12 names_out: &[PlSmallStr],
13 ) -> PolarsResult<DataFrame> {
14 let new_width = self.height();
15 let new_height = self.width();
16 let mut cols_t = match keep_names_as {
18 None => Vec::<Column>::with_capacity(new_width),
19 Some(name) => {
20 let mut tmp = Vec::<Column>::with_capacity(new_width + 1);
21 tmp.push(
22 StringChunked::from_iter_values(
23 name,
24 self.get_column_names_owned().into_iter(),
25 )
26 .into_column(),
27 );
28 tmp
29 },
30 };
31
32 let cols = self.columns();
33 match dtype {
34 #[cfg(feature = "dtype-i8")]
35 DataType::Int8 => numeric_transpose::<Int8Type>(cols, names_out, &mut cols_t),
36 #[cfg(feature = "dtype-i16")]
37 DataType::Int16 => numeric_transpose::<Int16Type>(cols, names_out, &mut cols_t),
38 DataType::Int32 => numeric_transpose::<Int32Type>(cols, names_out, &mut cols_t),
39 DataType::Int64 => numeric_transpose::<Int64Type>(cols, names_out, &mut cols_t),
40 #[cfg(feature = "dtype-u8")]
41 DataType::UInt8 => numeric_transpose::<UInt8Type>(cols, names_out, &mut cols_t),
42 #[cfg(feature = "dtype-u16")]
43 DataType::UInt16 => numeric_transpose::<UInt16Type>(cols, names_out, &mut cols_t),
44 DataType::UInt32 => numeric_transpose::<UInt32Type>(cols, names_out, &mut cols_t),
45 DataType::UInt64 => numeric_transpose::<UInt64Type>(cols, names_out, &mut cols_t),
46 DataType::Float32 => numeric_transpose::<Float32Type>(cols, names_out, &mut cols_t),
47 DataType::Float64 => numeric_transpose::<Float64Type>(cols, names_out, &mut cols_t),
48 #[cfg(feature = "object")]
49 DataType::Object(_) => {
50 polars_bail!(InvalidOperation: "Object dtype not supported in 'transpose'")
52 },
53 _ => {
54 let phys_dtype = dtype.to_physical();
55 let mut buffers = (0..new_width)
56 .map(|_| {
57 let buf: AnyValueBufferTrusted = (&phys_dtype, new_height).into();
58 buf
59 })
60 .collect::<Vec<_>>();
61
62 let columns = self
63 .materialized_column_iter()
64 .map(|s| s.cast(dtype).unwrap().cast(&phys_dtype).unwrap())
66 .collect::<Vec<_>>();
67
68 for series in &columns {
71 polars_ensure!(
72 series.dtype() == &phys_dtype,
73 ComputeError: "cannot transpose with supertype: {}", dtype
74 );
75 for (av, buf) in series.iter().zip(buffers.iter_mut()) {
76 unsafe {
78 buf.add_unchecked_borrowed_physical(&av);
79 }
80 }
81 }
82 cols_t.extend(buffers.into_iter().zip(names_out).map(|(buf, name)| {
83 let mut s = unsafe { buf.into_series().cast_unchecked(dtype).unwrap() };
85 s.rename(name.clone());
86 s.into()
87 }));
88 },
89 };
90
91 DataFrame::new(new_height, cols_t)
92 }
93
94 pub fn transpose(
95 &mut self,
96 keep_names_as: Option<&str>,
97 new_col_names: Option<Either<String, Vec<String>>>,
98 ) -> PolarsResult<DataFrame> {
99 let new_col_names = match new_col_names {
100 None => None,
101 Some(Either::Left(v)) => Some(Either::Left(v.into())),
102 Some(Either::Right(v)) => Some(Either::Right(
103 v.into_iter().map(Into::into).collect::<Vec<_>>(),
104 )),
105 };
106
107 self.transpose_impl(keep_names_as, new_col_names)
108 }
109 pub fn transpose_impl(
111 &mut self,
112 keep_names_as: Option<&str>,
113 new_col_names: Option<Either<PlSmallStr, Vec<PlSmallStr>>>,
114 ) -> PolarsResult<DataFrame> {
115 self.rechunk_mut_par();
117
118 let mut df = Cow::Borrowed(self); let names_out = match new_col_names {
120 None => (0..self.height())
121 .map(|i| format_pl_smallstr!("column_{i}"))
122 .collect(),
123 Some(cn) => match cn {
124 Either::Left(name) => {
125 let new_names = self.column(name.as_str()).and_then(|x| x.str())?;
126 polars_ensure!(new_names.null_count() == 0, ComputeError: "Column with new names can't have null values");
127 df = Cow::Owned(self.drop(name.as_str())?);
128 new_names
129 .into_no_null_iter()
130 .map(PlSmallStr::from_str)
131 .collect()
132 },
133 Either::Right(names) => {
134 polars_ensure!(names.len() == self.height(), ShapeMismatch: "Length of new column names must be the same as the row count");
135 names
136 },
137 },
138 };
139 if let Some(cn) = keep_names_as {
140 polars_ensure!(names_out.iter().all(|a| a.as_str() != cn), Duplicate: "{} is already in output column names", cn)
143 }
144 polars_ensure!(
145 df.height() != 0 && df.width() != 0,
146 NoData: "unable to transpose an empty DataFrame"
147 );
148 let dtype = df.get_supertype().unwrap()?;
149 df.transpose_from_dtype(&dtype, keep_names_as.map(PlSmallStr::from_str), &names_out)
150 }
151}
152
153#[inline]
154unsafe fn add_value<T: NumericNative>(
155 values_buf_ptr: usize,
156 col_idx: usize,
157 row_idx: usize,
158 value: T,
159) {
160 let vec_ref: &mut Vec<Vec<T>> = &mut *(values_buf_ptr as *mut Vec<Vec<T>>);
161 let column = vec_ref.get_unchecked_mut(col_idx);
162 let el_ptr = column.as_mut_ptr();
163 *el_ptr.add(row_idx) = value;
164}
165
166pub(super) fn numeric_transpose<T: PolarsNumericType>(
169 cols: &[Column],
170 names_out: &[PlSmallStr],
171 cols_t: &mut Vec<Column>,
172) {
173 let new_width = cols[0].len();
174 let new_height = cols.len();
175
176 let has_nulls = cols.iter().any(|s| s.null_count() > 0);
177
178 let mut values_buf: Vec<Vec<T::Native>> = (0..new_width)
179 .map(|_| Vec::with_capacity(new_height))
180 .collect();
181 let mut validity_buf: Vec<_> = if has_nulls {
182 (0..new_width).map(|_| vec![true; new_height]).collect()
184 } else {
185 (0..new_width).map(|_| vec![]).collect()
186 };
187
188 let values_buf_ptr = &mut values_buf as *mut Vec<Vec<T::Native>> as usize;
190 let validity_buf_ptr = &mut validity_buf as *mut Vec<Vec<bool>> as usize;
191
192 POOL.install(|| {
193 cols.iter()
194 .map(Column::as_materialized_series)
195 .enumerate()
196 .for_each(|(row_idx, s)| {
197 let s = s.cast(&T::get_static_dtype()).unwrap();
198 let ca = s.unpack::<T>().unwrap();
199
200 if has_nulls {
205 for (col_idx, opt_v) in ca.iter().enumerate() {
206 match opt_v {
207 None => unsafe {
208 let validity_vec: &mut Vec<Vec<bool>> =
209 &mut *(validity_buf_ptr as *mut Vec<Vec<bool>>);
210 let column = validity_vec.get_unchecked_mut(col_idx);
211 let el_ptr = column.as_mut_ptr();
212 *el_ptr.add(row_idx) = false;
213 add_value(values_buf_ptr, col_idx, row_idx, T::Native::default());
217 },
218 Some(v) => unsafe {
219 add_value(values_buf_ptr, col_idx, row_idx, v);
220 },
221 }
222 }
223 } else {
224 for (col_idx, v) in ca.into_no_null_iter().enumerate() {
225 unsafe {
226 let column: &mut Vec<Vec<T::Native>> =
227 &mut *(values_buf_ptr as *mut Vec<Vec<T::Native>>);
228 let el_ptr = column.get_unchecked_mut(col_idx).as_mut_ptr();
229 *el_ptr.add(row_idx) = v;
230 }
231 }
232 }
233 })
234 });
235
236 let par_iter = values_buf
237 .into_par_iter()
238 .zip(validity_buf)
239 .zip(names_out)
240 .map(|((mut values, validity), name)| {
241 unsafe {
244 values.set_len(new_height);
245 }
246
247 let validity = if has_nulls {
248 let validity = Bitmap::from_trusted_len_iter(validity.iter().copied());
249 if validity.unset_bits() > 0 {
250 Some(validity)
251 } else {
252 None
253 }
254 } else {
255 None
256 };
257
258 let arr = PrimitiveArray::<T::Native>::new(
259 T::get_static_dtype().to_arrow(CompatLevel::newest()),
260 values.into(),
261 validity,
262 );
263 ChunkedArray::<T>::with_chunk(name.clone(), arr).into_column()
264 });
265 POOL.install(|| cols_t.par_extend(par_iter));
266}
267
268#[cfg(test)]
269mod test {
270 use super::*;
271
272 #[test]
273 fn test_transpose() -> PolarsResult<()> {
274 let mut df = df![
275 "a" => [1, 2, 3],
276 "b" => [10, 20, 30],
277 ]?;
278
279 let out = df.transpose(None, None)?;
280 let expected = df![
281 "column_0" => [1, 10],
282 "column_1" => [2, 20],
283 "column_2" => [3, 30],
284
285 ]?;
286 assert!(out.equals_missing(&expected));
287
288 let mut df = df![
289 "a" => [Some(1), None, Some(3)],
290 "b" => [Some(10), Some(20), None],
291 ]?;
292 let out = df.transpose(None, None)?;
293 let expected = df![
294 "column_0" => [1, 10],
295 "column_1" => [None, Some(20)],
296 "column_2" => [Some(3), None],
297
298 ]?;
299 assert!(out.equals_missing(&expected));
300
301 let mut df = df![
302 "a" => ["a", "b", "c"],
303 "b" => [Some(10), Some(20), None],
304 ]?;
305 let out = df.transpose(None, None)?;
306 let expected = df![
307 "column_0" => ["a", "10"],
308 "column_1" => ["b", "20"],
309 "column_2" => [Some("c"), None],
310
311 ]?;
312 assert!(out.equals_missing(&expected));
313 Ok(())
314 }
315}