polars_io/csv/read/
read_impl.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
pub(super) mod batched;

use std::fmt;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Mutex;

use polars_core::prelude::*;
use polars_core::utils::{accumulate_dataframes_vertical, handle_casting_failures};
use polars_core::POOL;
#[cfg(feature = "polars-time")]
use polars_time::prelude::*;
use rayon::prelude::*;

use super::buffer::init_buffers;
use super::options::{CommentPrefix, CsvEncoding, NullValuesCompiled};
use super::parser::{
    is_comment_line, parse_lines, skip_bom, skip_line_ending, skip_lines_naive, skip_this_line,
    CountLines, SplitLines,
};
use super::reader::prepare_csv_schema;
use super::schema_inference::{check_decimal_comma, infer_file_schema};
#[cfg(any(feature = "decompress", feature = "decompress-fast"))]
use super::utils::decompress;
use super::CsvParseOptions;
use crate::csv::read::parser::skip_this_line_naive;
use crate::mmap::ReaderBytes;
use crate::predicates::PhysicalIoExpr;
#[cfg(not(any(feature = "decompress", feature = "decompress-fast")))]
use crate::utils::compression::SupportedCompression;
use crate::utils::update_row_counts2;
use crate::RowIndex;

pub fn cast_columns(
    df: &mut DataFrame,
    to_cast: &[Field],
    parallel: bool,
    ignore_errors: bool,
) -> PolarsResult<()> {
    let cast_fn = |c: &Column, fld: &Field| {
        let out = match (c.dtype(), fld.dtype()) {
            #[cfg(feature = "temporal")]
            (DataType::String, DataType::Date) => c
                .str()
                .unwrap()
                .as_date(None, false)
                .map(|ca| ca.into_column()),
            #[cfg(feature = "temporal")]
            (DataType::String, DataType::Time) => c
                .str()
                .unwrap()
                .as_time(None, false)
                .map(|ca| ca.into_column()),
            #[cfg(feature = "temporal")]
            (DataType::String, DataType::Datetime(tu, _)) => c
                .str()
                .unwrap()
                .as_datetime(
                    None,
                    *tu,
                    false,
                    false,
                    None,
                    &StringChunked::from_iter(std::iter::once("raise")),
                )
                .map(|ca| ca.into_column()),
            (_, dt) => c.cast(dt),
        }?;
        if !ignore_errors && c.null_count() != out.null_count() {
            handle_casting_failures(c.as_materialized_series(), out.as_materialized_series())?;
        }
        Ok(out)
    };

    if parallel {
        let cols = POOL.install(|| {
            df.get_columns()
                .into_par_iter()
                .map(|s| {
                    if let Some(fld) = to_cast.iter().find(|fld| fld.name() == s.name()) {
                        cast_fn(s, fld)
                    } else {
                        Ok(s.clone())
                    }
                })
                .collect::<PolarsResult<Vec<_>>>()
        })?;
        *df = unsafe { DataFrame::new_no_checks(df.height(), cols) }
    } else {
        // cast to the original dtypes in the schema
        for fld in to_cast {
            // field may not be projected
            if let Some(idx) = df.get_column_index(fld.name()) {
                df.try_apply_at_idx(idx, |s| cast_fn(s, fld))?;
            }
        }
    }
    Ok(())
}

/// CSV file reader
pub(crate) struct CoreReader<'a> {
    reader_bytes: Option<ReaderBytes<'a>>,
    /// Explicit schema for the CSV file
    schema: SchemaRef,
    parse_options: CsvParseOptions,
    /// Optional projection for which columns to load (zero-based column indices)
    projection: Option<Vec<usize>>,
    /// Current line number, used in error reporting
    current_line: usize,
    ignore_errors: bool,
    skip_lines: usize,
    skip_rows_before_header: usize,
    // after the header, we need to take embedded lines into account
    skip_rows_after_header: usize,
    n_rows: Option<usize>,
    n_threads: Option<usize>,
    has_header: bool,
    chunk_size: usize,
    null_values: Option<NullValuesCompiled>,
    predicate: Option<Arc<dyn PhysicalIoExpr>>,
    to_cast: Vec<Field>,
    row_index: Option<RowIndex>,
    #[cfg_attr(not(feature = "dtype-categorical"), allow(unused))]
    has_categorical: bool,
}

impl fmt::Debug for CoreReader<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Reader")
            .field("schema", &self.schema)
            .field("projection", &self.projection)
            .field("current_line", &self.current_line)
            .finish()
    }
}

impl<'a> CoreReader<'a> {
    #[allow(clippy::too_many_arguments)]
    pub(crate) fn new(
        reader_bytes: ReaderBytes<'a>,
        parse_options: Arc<CsvParseOptions>,
        n_rows: Option<usize>,
        skip_rows: usize,
        skip_lines: usize,
        mut projection: Option<Vec<usize>>,
        max_records: Option<usize>,
        has_header: bool,
        ignore_errors: bool,
        schema: Option<SchemaRef>,
        columns: Option<Arc<[PlSmallStr]>>,
        mut n_threads: Option<usize>,
        schema_overwrite: Option<SchemaRef>,
        dtype_overwrite: Option<Arc<Vec<DataType>>>,
        chunk_size: usize,
        predicate: Option<Arc<dyn PhysicalIoExpr>>,
        mut to_cast: Vec<Field>,
        skip_rows_after_header: usize,
        row_index: Option<RowIndex>,
        raise_if_empty: bool,
    ) -> PolarsResult<CoreReader<'a>> {
        let separator = parse_options.separator;

        check_decimal_comma(parse_options.decimal_comma, separator)?;
        #[cfg(any(feature = "decompress", feature = "decompress-fast"))]
        let mut reader_bytes = reader_bytes;

        #[cfg(not(any(feature = "decompress", feature = "decompress-fast")))]
        if SupportedCompression::check(&reader_bytes).is_some() {
            polars_bail!(
                ComputeError: "cannot read compressed CSV file; \
                compile with feature 'decompress' or 'decompress-fast'"
            );
        }
        // We keep track of the inferred schema bool
        // In case the file is compressed this schema inference is wrong and has to be done
        // again after decompression.
        #[cfg(any(feature = "decompress", feature = "decompress-fast"))]
        {
            let total_n_rows =
                n_rows.map(|n| skip_rows + (has_header as usize) + skip_rows_after_header + n);
            if let Some(b) = decompress(
                &reader_bytes,
                total_n_rows,
                separator,
                parse_options.quote_char,
                parse_options.eol_char,
            ) {
                reader_bytes = ReaderBytes::Owned(b.into());
            }
        }

        let mut schema = match schema {
            Some(schema) => schema,
            None => {
                let (inferred_schema, _, _) = infer_file_schema(
                    &reader_bytes,
                    &parse_options,
                    max_records,
                    has_header,
                    schema_overwrite.as_deref(),
                    skip_rows,
                    skip_lines,
                    skip_rows_after_header,
                    raise_if_empty,
                    &mut n_threads,
                )?;
                Arc::new(inferred_schema)
            },
        };
        if let Some(dtypes) = dtype_overwrite {
            let s = Arc::make_mut(&mut schema);
            for (index, dt) in dtypes.iter().enumerate() {
                s.set_dtype_at_index(index, dt.clone()).unwrap();
            }
        }

        let has_categorical = prepare_csv_schema(&mut schema, &mut to_cast)?;

        // Create a null value for every column
        let null_values = parse_options
            .null_values
            .as_ref()
            .map(|nv| nv.clone().compile(&schema))
            .transpose()?;

        if let Some(cols) = columns {
            let mut prj = Vec::with_capacity(cols.len());
            for col in cols.as_ref() {
                let i = schema.try_index_of(col)?;
                prj.push(i);
            }
            projection = Some(prj);
        }

        Ok(CoreReader {
            reader_bytes: Some(reader_bytes),
            parse_options: (*parse_options).clone(),
            schema,
            projection,
            current_line: usize::from(has_header),
            ignore_errors,
            skip_lines,
            skip_rows_before_header: skip_rows,
            skip_rows_after_header,
            n_rows,
            n_threads,
            has_header,
            chunk_size,
            null_values,
            predicate,
            to_cast,
            row_index,
            has_categorical,
        })
    }

    fn find_starting_point<'b>(
        &self,
        bytes: &'b [u8],
        quote_char: Option<u8>,
        eol_char: u8,
    ) -> PolarsResult<(&'b [u8], Option<usize>)> {
        let i = find_starting_point(
            bytes,
            quote_char,
            eol_char,
            self.schema.len(),
            self.skip_lines,
            self.skip_rows_before_header,
            self.skip_rows_after_header,
            self.parse_options.comment_prefix.as_ref(),
            self.has_header,
        )?;

        Ok((&bytes[i..], (i <= bytes.len()).then_some(i)))
    }

    fn get_projection(&mut self) -> PolarsResult<Vec<usize>> {
        // we also need to sort the projection to have predictable output.
        // the `parse_lines` function expects this.
        self.projection
            .take()
            .map(|mut v| {
                v.sort_unstable();
                if let Some(idx) = v.last() {
                    polars_ensure!(*idx < self.schema.len(), OutOfBounds: "projection index: {} is out of bounds for csv schema with length: {}", idx, self.schema.len())
                }
                Ok(v)
            })
            .unwrap_or_else(|| Ok((0..self.schema.len()).collect()))
    }

    fn read_chunk(
        &self,
        bytes: &[u8],
        projection: &[usize],
        bytes_offset: usize,
        capacity: usize,
        starting_point_offset: Option<usize>,
        stop_at_nbytes: usize,
    ) -> PolarsResult<DataFrame> {
        let mut df = read_chunk(
            bytes,
            &self.parse_options,
            self.schema.as_ref(),
            self.ignore_errors,
            projection,
            bytes_offset,
            capacity,
            self.null_values.as_ref(),
            usize::MAX,
            stop_at_nbytes,
            starting_point_offset,
        )?;

        cast_columns(&mut df, &self.to_cast, false, self.ignore_errors)?;
        Ok(df)
    }

    fn parse_csv(&mut self, bytes: &[u8]) -> PolarsResult<DataFrame> {
        let (bytes, _) = self.find_starting_point(
            bytes,
            self.parse_options.quote_char,
            self.parse_options.eol_char,
        )?;

        let projection = self.get_projection()?;

        // An empty file with a schema should return an empty DataFrame with that schema
        if bytes.is_empty() {
            let mut df = if projection.len() == self.schema.len() {
                DataFrame::empty_with_schema(self.schema.as_ref())
            } else {
                DataFrame::empty_with_schema(
                    &projection
                        .iter()
                        .map(|&i| self.schema.get_at_index(i).unwrap())
                        .map(|(name, dtype)| Field {
                            name: name.clone(),
                            dtype: dtype.clone(),
                        })
                        .collect::<Schema>(),
                )
            };
            if let Some(ref row_index) = self.row_index {
                df.insert_column(0, Series::new_empty(row_index.name.clone(), &IDX_DTYPE))?;
            }
            return Ok(df);
        }

        let n_threads = self.n_threads.unwrap_or_else(|| POOL.current_num_threads());

        // This is chosen by benchmarking on ny city trip csv dataset.
        // We want small enough chunks such that threads start working as soon as possible
        // But we also want them large enough, so that we have less chunks related overhead, but
        // We minimize chunks to 16 MB to still fit L3 cache.
        let n_parts_hint = n_threads * 16;
        let chunk_size = std::cmp::min(bytes.len() / n_parts_hint, 16 * 1024 * 1024);

        // Use a small min chunk size to catch failures in tests.
        #[cfg(debug_assertions)]
        let min_chunk_size = 64;
        #[cfg(not(debug_assertions))]
        let min_chunk_size = 1024 * 4;

        let mut chunk_size = std::cmp::max(chunk_size, min_chunk_size);
        let mut total_bytes_offset = 0;

        let results = Arc::new(Mutex::new(vec![]));
        // We have to do this after parsing as there can be comments.
        let total_line_count = &AtomicUsize::new(0);

        #[cfg(not(target_family = "wasm"))]
        let pool;
        #[cfg(not(target_family = "wasm"))]
        let pool = if n_threads == POOL.current_num_threads() {
            &POOL
        } else {
            pool = rayon::ThreadPoolBuilder::new()
                .num_threads(n_threads)
                .build()
                .map_err(|_| polars_err!(ComputeError: "could not spawn threads"))?;
            &pool
        };
        #[cfg(target_family = "wasm")]
        let pool = &POOL;

        let counter = CountLines::new(self.parse_options.quote_char, self.parse_options.eol_char);
        let mut total_offset = 0;
        let check_utf8 = matches!(self.parse_options.encoding, CsvEncoding::Utf8)
            && self.schema.iter_fields().any(|f| f.dtype().is_string());

        pool.scope(|s| {
            loop {
                let b = unsafe { bytes.get_unchecked(total_offset..) };
                if b.is_empty() {
                    break;
                }
                debug_assert!(
                    total_offset == 0 || bytes[total_offset - 1] == self.parse_options.eol_char
                );
                let (count, position) = counter.find_next(b, &mut chunk_size);
                debug_assert!(count == 0 || b[position] == self.parse_options.eol_char);

                let (b, count) = if count == 0
                    && unsafe { b.as_ptr().add(b.len()) == bytes.as_ptr().add(bytes.len()) }
                {
                    total_offset = bytes.len();
                    (b, 1)
                } else {
                    if count == 0 {
                        chunk_size *= 2;
                        continue;
                    }

                    let end = total_offset + position + 1;
                    let b = unsafe { bytes.get_unchecked(total_offset..end) };

                    total_offset = end;
                    (b, count)
                };

                if !b.is_empty() {
                    let results = results.clone();
                    let projection = projection.as_ref();
                    let slf = &(*self);
                    s.spawn(move |_| {
                        if check_utf8 && !super::buffer::validate_utf8(b) {
                            let mut results = results.lock().unwrap();
                            results.push((
                                b.as_ptr() as usize,
                                Err(polars_err!(ComputeError: "invalid utf-8 sequence")),
                            ));
                            return;
                        }

                        let result = slf
                            .read_chunk(b, projection, 0, count, Some(0), b.len())
                            .and_then(|mut df| {
                                debug_assert!(df.height() <= count);

                                if slf.n_rows.is_some() {
                                    total_line_count.fetch_add(df.height(), Ordering::Relaxed);
                                }

                                // We cannot use the line count as there can be comments in the lines so we must correct line counts later.
                                if let Some(rc) = &slf.row_index {
                                    // is first chunk
                                    let offset = if b.as_ptr() == bytes.as_ptr() {
                                        Some(rc.offset)
                                    } else {
                                        None
                                    };

                                    df.with_row_index_mut(rc.name.clone(), offset);
                                };

                                if let Some(predicate) = slf.predicate.as_ref() {
                                    let s = predicate.evaluate_io(&df)?;
                                    let mask = s.bool()?;
                                    df = df.filter(mask)?;
                                }
                                Ok(df)
                            });

                        results.lock().unwrap().push((b.as_ptr() as usize, result));
                    });

                    // Check just after we spawned a chunk. That mean we processed all data up until
                    // row count.
                    if self.n_rows.is_some()
                        && total_line_count.load(Ordering::Relaxed) > self.n_rows.unwrap()
                    {
                        break;
                    }
                }
                total_bytes_offset += b.len();
            }
        });
        let mut results = std::mem::take(&mut *results.lock().unwrap());
        results.sort_unstable_by_key(|k| k.0);
        let mut dfs = results
            .into_iter()
            .map(|k| k.1)
            .collect::<PolarsResult<Vec<_>>>()?;

        if let Some(rc) = &self.row_index {
            update_row_counts2(&mut dfs, rc.offset)
        };
        accumulate_dataframes_vertical(dfs)
    }

    /// Read the csv into a DataFrame. The predicate can come from a lazy physical plan.
    pub fn finish(mut self) -> PolarsResult<DataFrame> {
        #[cfg(feature = "dtype-categorical")]
        let mut _cat_lock = if self.has_categorical {
            Some(polars_core::StringCacheHolder::hold())
        } else {
            None
        };

        let reader_bytes = self.reader_bytes.take().unwrap();

        let mut df = self.parse_csv(&reader_bytes)?;

        // if multi-threaded the n_rows was probabilistically determined.
        // Let's slice to correct number of rows if possible.
        if let Some(n_rows) = self.n_rows {
            if n_rows < df.height() {
                df = df.slice(0, n_rows)
            }
        }
        Ok(df)
    }
}

#[allow(clippy::too_many_arguments)]
pub fn read_chunk(
    bytes: &[u8],
    parse_options: &CsvParseOptions,
    schema: &Schema,
    ignore_errors: bool,
    projection: &[usize],
    bytes_offset_thread: usize,
    capacity: usize,
    null_values: Option<&NullValuesCompiled>,
    chunk_size: usize,
    stop_at_nbytes: usize,
    starting_point_offset: Option<usize>,
) -> PolarsResult<DataFrame> {
    let mut read = bytes_offset_thread;
    // There's an off-by-one error somewhere in the reading code, where it reads
    // one more item than the requested capacity. Given the batch sizes are
    // approximate (sometimes they're smaller), this isn't broken, but it does
    // mean a bunch of extra allocation and copying. So we allocate a
    // larger-by-one buffer so the size is more likely to be accurate.
    let mut buffers = init_buffers(
        projection,
        capacity + 1,
        schema,
        parse_options.quote_char,
        parse_options.encoding,
        parse_options.decimal_comma,
    )?;

    debug_assert!(projection.is_sorted());

    let mut last_read = usize::MAX;
    loop {
        if read >= stop_at_nbytes || read == last_read {
            break;
        }
        let local_bytes = &bytes[read..stop_at_nbytes];

        last_read = read;
        let offset = read + starting_point_offset.unwrap();
        read += parse_lines(
            local_bytes,
            parse_options,
            offset,
            ignore_errors,
            null_values,
            projection,
            &mut buffers,
            chunk_size,
            schema.len(),
            schema,
        )?;
    }

    let columns = buffers
        .into_iter()
        .map(|buf| buf.into_series().map(Column::from))
        .collect::<PolarsResult<Vec<_>>>()?;
    Ok(unsafe { DataFrame::new_no_checks_height_from_first(columns) })
}

#[allow(clippy::too_many_arguments)]
pub fn find_starting_point(
    mut bytes: &[u8],
    quote_char: Option<u8>,
    eol_char: u8,
    schema_len: usize,
    skip_lines: usize,
    skip_rows_before_header: usize,
    skip_rows_after_header: usize,
    comment_prefix: Option<&CommentPrefix>,
    has_header: bool,
) -> PolarsResult<usize> {
    let full_len = bytes.len();
    let starting_point_offset = bytes.as_ptr() as usize;

    bytes = if skip_lines > 0 {
        polars_ensure!(skip_rows_before_header == 0, InvalidOperation: "only one of 'skip_rows'/'skip_lines' may be set");
        skip_lines_naive(bytes, eol_char, skip_lines)
    } else {
        // Skip utf8 byte-order-mark (BOM)
        bytes = skip_bom(bytes);

        // \n\n can be a empty string row of a single column
        // in other cases we skip it.
        if schema_len > 1 {
            bytes = skip_line_ending(bytes, eol_char)
        }
        bytes
    };

    // skip 'n' leading rows
    if skip_rows_before_header > 0 {
        let mut split_lines = SplitLines::new(bytes, quote_char, eol_char, comment_prefix);
        let mut current_line = &bytes[..0];

        for _ in 0..skip_rows_before_header {
            current_line = split_lines
                .next()
                .ok_or_else(|| polars_err!(NoData: "not enough lines to skip"))?;
        }

        current_line = split_lines
            .next()
            .unwrap_or(&current_line[current_line.len()..]);
        bytes = &bytes[current_line.as_ptr() as usize - bytes.as_ptr() as usize..];
    }

    // skip lines that are comments
    while is_comment_line(bytes, comment_prefix) {
        bytes = skip_this_line_naive(bytes, eol_char);
    }

    // skip header row
    if has_header {
        bytes = skip_this_line(bytes, quote_char, eol_char);
    }
    // skip 'n' rows following the header
    if skip_rows_after_header > 0 {
        let mut split_lines = SplitLines::new(bytes, quote_char, eol_char, comment_prefix);
        let mut current_line = &bytes[..0];

        for _ in 0..skip_rows_after_header {
            current_line = split_lines
                .next()
                .ok_or_else(|| polars_err!(NoData: "not enough lines to skip"))?;
        }

        current_line = split_lines
            .next()
            .unwrap_or(&current_line[current_line.len()..]);
        bytes = &bytes[current_line.as_ptr() as usize - bytes.as_ptr() as usize..];
    }

    Ok(
        // Some of the functions we call may return `&'static []` instead of
        // slices of `&bytes[..]`.
        if bytes.is_empty() {
            full_len
        } else {
            bytes.as_ptr() as usize - starting_point_offset
        },
    )
}