polars_core/series/implementations/
floats.rs

1use polars_compute::rolling::QuantileMethod;
2
3use super::*;
4use crate::chunked_array::comparison::*;
5#[cfg(feature = "algorithm_group_by")]
6use crate::frame::group_by::*;
7use crate::prelude::*;
8
9macro_rules! impl_dyn_series {
10    ($ca: ident, $pdt:ident) => {
11        impl private::PrivateSeries for SeriesWrap<$ca> {
12            fn compute_len(&mut self) {
13                self.0.compute_len()
14            }
15            fn _field(&self) -> Cow<Field> {
16                Cow::Borrowed(self.0.ref_field())
17            }
18            fn _dtype(&self) -> &DataType {
19                self.0.ref_field().dtype()
20            }
21
22            fn _set_flags(&mut self, flags: StatisticsFlags) {
23                self.0.set_flags(flags)
24            }
25            fn _get_flags(&self) -> StatisticsFlags {
26                self.0.get_flags()
27            }
28            unsafe fn equal_element(
29                &self,
30                idx_self: usize,
31                idx_other: usize,
32                other: &Series,
33            ) -> bool {
34                self.0.equal_element(idx_self, idx_other, other)
35            }
36
37            #[cfg(feature = "zip_with")]
38            fn zip_with_same_type(
39                &self,
40                mask: &BooleanChunked,
41                other: &Series,
42            ) -> PolarsResult<Series> {
43                ChunkZip::zip_with(&self.0, mask, other.as_ref().as_ref())
44                    .map(|ca| ca.into_series())
45            }
46            fn into_total_eq_inner<'a>(&'a self) -> Box<dyn TotalEqInner + 'a> {
47                (&self.0).into_total_eq_inner()
48            }
49            fn into_total_ord_inner<'a>(&'a self) -> Box<dyn TotalOrdInner + 'a> {
50                (&self.0).into_total_ord_inner()
51            }
52
53            fn vec_hash(
54                &self,
55                random_state: PlSeedableRandomStateQuality,
56                buf: &mut Vec<u64>,
57            ) -> PolarsResult<()> {
58                self.0.vec_hash(random_state, buf)?;
59                Ok(())
60            }
61
62            fn vec_hash_combine(
63                &self,
64                build_hasher: PlSeedableRandomStateQuality,
65                hashes: &mut [u64],
66            ) -> PolarsResult<()> {
67                self.0.vec_hash_combine(build_hasher, hashes)?;
68                Ok(())
69            }
70
71            #[cfg(feature = "algorithm_group_by")]
72            unsafe fn agg_min(&self, groups: &GroupsType) -> Series {
73                self.0.agg_min(groups)
74            }
75
76            #[cfg(feature = "algorithm_group_by")]
77            unsafe fn agg_max(&self, groups: &GroupsType) -> Series {
78                self.0.agg_max(groups)
79            }
80
81            #[cfg(feature = "algorithm_group_by")]
82            unsafe fn agg_sum(&self, groups: &GroupsType) -> Series {
83                self.0.agg_sum(groups)
84            }
85
86            #[cfg(feature = "algorithm_group_by")]
87            unsafe fn agg_std(&self, groups: &GroupsType, ddof: u8) -> Series {
88                self.agg_std(groups, ddof)
89            }
90
91            #[cfg(feature = "algorithm_group_by")]
92            unsafe fn agg_var(&self, groups: &GroupsType, ddof: u8) -> Series {
93                self.agg_var(groups, ddof)
94            }
95
96            #[cfg(feature = "algorithm_group_by")]
97            unsafe fn agg_list(&self, groups: &GroupsType) -> Series {
98                self.0.agg_list(groups)
99            }
100
101            #[cfg(feature = "bitwise")]
102            unsafe fn agg_and(&self, groups: &GroupsType) -> Series {
103                self.0.agg_and(groups)
104            }
105            #[cfg(feature = "bitwise")]
106            unsafe fn agg_or(&self, groups: &GroupsType) -> Series {
107                self.0.agg_or(groups)
108            }
109            #[cfg(feature = "bitwise")]
110            unsafe fn agg_xor(&self, groups: &GroupsType) -> Series {
111                self.0.agg_xor(groups)
112            }
113
114            fn subtract(&self, rhs: &Series) -> PolarsResult<Series> {
115                NumOpsDispatch::subtract(&self.0, rhs)
116            }
117            fn add_to(&self, rhs: &Series) -> PolarsResult<Series> {
118                NumOpsDispatch::add_to(&self.0, rhs)
119            }
120            fn multiply(&self, rhs: &Series) -> PolarsResult<Series> {
121                NumOpsDispatch::multiply(&self.0, rhs)
122            }
123            fn divide(&self, rhs: &Series) -> PolarsResult<Series> {
124                NumOpsDispatch::divide(&self.0, rhs)
125            }
126            fn remainder(&self, rhs: &Series) -> PolarsResult<Series> {
127                NumOpsDispatch::remainder(&self.0, rhs)
128            }
129            #[cfg(feature = "algorithm_group_by")]
130            fn group_tuples(&self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsType> {
131                IntoGroupsType::group_tuples(&self.0, multithreaded, sorted)
132            }
133
134            fn arg_sort_multiple(
135                &self,
136                by: &[Column],
137                options: &SortMultipleOptions,
138            ) -> PolarsResult<IdxCa> {
139                self.0.arg_sort_multiple(by, options)
140            }
141        }
142
143        impl SeriesTrait for SeriesWrap<$ca> {
144            #[cfg(feature = "rolling_window")]
145            fn rolling_map(
146                &self,
147                _f: &dyn Fn(&Series) -> Series,
148                _options: RollingOptionsFixedWindow,
149            ) -> PolarsResult<Series> {
150                ChunkRollApply::rolling_map(&self.0, _f, _options).map(|ca| ca.into_series())
151            }
152
153            fn rename(&mut self, name: PlSmallStr) {
154                self.0.rename(name);
155            }
156
157            fn chunk_lengths(&self) -> ChunkLenIter {
158                self.0.chunk_lengths()
159            }
160            fn name(&self) -> &PlSmallStr {
161                self.0.name()
162            }
163
164            fn chunks(&self) -> &Vec<ArrayRef> {
165                self.0.chunks()
166            }
167            unsafe fn chunks_mut(&mut self) -> &mut Vec<ArrayRef> {
168                self.0.chunks_mut()
169            }
170            fn shrink_to_fit(&mut self) {
171                self.0.shrink_to_fit()
172            }
173
174            fn slice(&self, offset: i64, length: usize) -> Series {
175                return self.0.slice(offset, length).into_series();
176            }
177
178            fn split_at(&self, offset: i64) -> (Series, Series) {
179                let (a, b) = self.0.split_at(offset);
180                (a.into_series(), b.into_series())
181            }
182
183            fn append(&mut self, other: &Series) -> PolarsResult<()> {
184                polars_ensure!(self.0.dtype() == other.dtype(), append);
185                self.0.append(other.as_ref().as_ref())?;
186                Ok(())
187            }
188            fn append_owned(&mut self, other: Series) -> PolarsResult<()> {
189                polars_ensure!(self.0.dtype() == other.dtype(), append);
190                self.0.append_owned(other.take_inner())
191            }
192
193            fn extend(&mut self, other: &Series) -> PolarsResult<()> {
194                polars_ensure!(self.0.dtype() == other.dtype(), extend);
195                self.0.extend(other.as_ref().as_ref())?;
196                Ok(())
197            }
198
199            fn filter(&self, filter: &BooleanChunked) -> PolarsResult<Series> {
200                ChunkFilter::filter(&self.0, filter).map(|ca| ca.into_series())
201            }
202
203            fn _sum_as_f64(&self) -> f64 {
204                self.0._sum_as_f64()
205            }
206
207            fn mean(&self) -> Option<f64> {
208                self.0.mean()
209            }
210
211            fn median(&self) -> Option<f64> {
212                self.0.median().map(|v| v as f64)
213            }
214
215            fn std(&self, ddof: u8) -> Option<f64> {
216                self.0.std(ddof)
217            }
218
219            fn var(&self, ddof: u8) -> Option<f64> {
220                self.0.var(ddof)
221            }
222
223            fn take(&self, indices: &IdxCa) -> PolarsResult<Series> {
224                Ok(self.0.take(indices)?.into_series())
225            }
226
227            unsafe fn take_unchecked(&self, indices: &IdxCa) -> Series {
228                self.0.take_unchecked(indices).into_series()
229            }
230
231            fn take_slice(&self, indices: &[IdxSize]) -> PolarsResult<Series> {
232                Ok(self.0.take(indices)?.into_series())
233            }
234
235            unsafe fn take_slice_unchecked(&self, indices: &[IdxSize]) -> Series {
236                self.0.take_unchecked(indices).into_series()
237            }
238
239            fn len(&self) -> usize {
240                self.0.len()
241            }
242
243            fn rechunk(&self) -> Series {
244                self.0.rechunk().into_owned().into_series()
245            }
246
247            fn new_from_index(&self, index: usize, length: usize) -> Series {
248                ChunkExpandAtIndex::new_from_index(&self.0, index, length).into_series()
249            }
250
251            fn cast(&self, dtype: &DataType, cast_options: CastOptions) -> PolarsResult<Series> {
252                self.0.cast_with_options(dtype, cast_options)
253            }
254
255            #[inline]
256            unsafe fn get_unchecked(&self, index: usize) -> AnyValue {
257                self.0.get_any_value_unchecked(index)
258            }
259
260            fn sort_with(&self, options: SortOptions) -> PolarsResult<Series> {
261                Ok(ChunkSort::sort_with(&self.0, options).into_series())
262            }
263
264            fn arg_sort(&self, options: SortOptions) -> IdxCa {
265                ChunkSort::arg_sort(&self.0, options)
266            }
267
268            fn null_count(&self) -> usize {
269                self.0.null_count()
270            }
271
272            fn has_nulls(&self) -> bool {
273                self.0.has_nulls()
274            }
275
276            #[cfg(feature = "algorithm_group_by")]
277            fn unique(&self) -> PolarsResult<Series> {
278                ChunkUnique::unique(&self.0).map(|ca| ca.into_series())
279            }
280
281            #[cfg(feature = "algorithm_group_by")]
282            fn n_unique(&self) -> PolarsResult<usize> {
283                ChunkUnique::n_unique(&self.0)
284            }
285
286            #[cfg(feature = "algorithm_group_by")]
287            fn arg_unique(&self) -> PolarsResult<IdxCa> {
288                ChunkUnique::arg_unique(&self.0)
289            }
290
291            fn is_null(&self) -> BooleanChunked {
292                self.0.is_null()
293            }
294
295            fn is_not_null(&self) -> BooleanChunked {
296                self.0.is_not_null()
297            }
298
299            fn reverse(&self) -> Series {
300                ChunkReverse::reverse(&self.0).into_series()
301            }
302
303            fn as_single_ptr(&mut self) -> PolarsResult<usize> {
304                self.0.as_single_ptr()
305            }
306
307            fn shift(&self, periods: i64) -> Series {
308                ChunkShift::shift(&self.0, periods).into_series()
309            }
310
311            fn sum_reduce(&self) -> PolarsResult<Scalar> {
312                Ok(ChunkAggSeries::sum_reduce(&self.0))
313            }
314            fn max_reduce(&self) -> PolarsResult<Scalar> {
315                Ok(ChunkAggSeries::max_reduce(&self.0))
316            }
317            fn min_reduce(&self) -> PolarsResult<Scalar> {
318                Ok(ChunkAggSeries::min_reduce(&self.0))
319            }
320            fn median_reduce(&self) -> PolarsResult<Scalar> {
321                Ok(QuantileAggSeries::median_reduce(&self.0))
322            }
323            fn var_reduce(&self, ddof: u8) -> PolarsResult<Scalar> {
324                Ok(VarAggSeries::var_reduce(&self.0, ddof))
325            }
326            fn std_reduce(&self, ddof: u8) -> PolarsResult<Scalar> {
327                Ok(VarAggSeries::std_reduce(&self.0, ddof))
328            }
329            fn quantile_reduce(
330                &self,
331                quantile: f64,
332                method: QuantileMethod,
333            ) -> PolarsResult<Scalar> {
334                QuantileAggSeries::quantile_reduce(&self.0, quantile, method)
335            }
336            #[cfg(feature = "bitwise")]
337            fn and_reduce(&self) -> PolarsResult<Scalar> {
338                let dt = <$pdt as PolarsDataType>::get_dtype();
339                let av = self.0.and_reduce().map_or(AnyValue::Null, Into::into);
340
341                Ok(Scalar::new(dt, av))
342            }
343            #[cfg(feature = "bitwise")]
344            fn or_reduce(&self) -> PolarsResult<Scalar> {
345                let dt = <$pdt as PolarsDataType>::get_dtype();
346                let av = self.0.or_reduce().map_or(AnyValue::Null, Into::into);
347
348                Ok(Scalar::new(dt, av))
349            }
350            #[cfg(feature = "bitwise")]
351            fn xor_reduce(&self) -> PolarsResult<Scalar> {
352                let dt = <$pdt as PolarsDataType>::get_dtype();
353                let av = self.0.xor_reduce().map_or(AnyValue::Null, Into::into);
354
355                Ok(Scalar::new(dt, av))
356            }
357
358            #[cfg(feature = "approx_unique")]
359            fn approx_n_unique(&self) -> PolarsResult<IdxSize> {
360                Ok(ChunkApproxNUnique::approx_n_unique(&self.0))
361            }
362
363            fn clone_inner(&self) -> Arc<dyn SeriesTrait> {
364                Arc::new(SeriesWrap(Clone::clone(&self.0)))
365            }
366
367            #[cfg(feature = "checked_arithmetic")]
368            fn checked_div(&self, rhs: &Series) -> PolarsResult<Series> {
369                self.0.checked_div(rhs)
370            }
371
372            fn as_any(&self) -> &dyn Any {
373                &self.0
374            }
375
376            fn as_any_mut(&mut self) -> &mut dyn Any {
377                &mut self.0
378            }
379
380            fn as_phys_any(&self) -> &dyn Any {
381                &self.0
382            }
383
384            fn as_arc_any(self: Arc<Self>) -> Arc<dyn Any + Send + Sync> {
385                self as _
386            }
387        }
388    };
389}
390
391impl_dyn_series!(Float32Chunked, Float32Type);
392impl_dyn_series!(Float64Chunked, Float64Type);