polars_core/series/implementations/
floats.rs

1use num_traits::AsPrimitive;
2use polars_compute::rolling::QuantileMethod;
3
4use super::*;
5use crate::chunked_array::comparison::*;
6#[cfg(feature = "algorithm_group_by")]
7use crate::frame::group_by::*;
8use crate::prelude::*;
9
10macro_rules! impl_dyn_series {
11    ($ca: ident, $pdt:ident) => {
12        impl private::PrivateSeries for SeriesWrap<$ca> {
13            fn compute_len(&mut self) {
14                self.0.compute_len()
15            }
16            fn _field(&self) -> Cow<'_, Field> {
17                Cow::Borrowed(self.0.ref_field())
18            }
19            fn _dtype(&self) -> &DataType {
20                self.0.ref_field().dtype()
21            }
22
23            fn _set_flags(&mut self, flags: StatisticsFlags) {
24                self.0.set_flags(flags)
25            }
26            fn _get_flags(&self) -> StatisticsFlags {
27                self.0.get_flags()
28            }
29            unsafe fn equal_element(
30                &self,
31                idx_self: usize,
32                idx_other: usize,
33                other: &Series,
34            ) -> bool {
35                self.0.equal_element(idx_self, idx_other, other)
36            }
37
38            #[cfg(feature = "zip_with")]
39            fn zip_with_same_type(
40                &self,
41                mask: &BooleanChunked,
42                other: &Series,
43            ) -> PolarsResult<Series> {
44                ChunkZip::zip_with(&self.0, mask, other.as_ref().as_ref())
45                    .map(|ca| ca.into_series())
46            }
47            fn into_total_eq_inner<'a>(&'a self) -> Box<dyn TotalEqInner + 'a> {
48                (&self.0).into_total_eq_inner()
49            }
50            fn into_total_ord_inner<'a>(&'a self) -> Box<dyn TotalOrdInner + 'a> {
51                (&self.0).into_total_ord_inner()
52            }
53
54            fn vec_hash(
55                &self,
56                random_state: PlSeedableRandomStateQuality,
57                buf: &mut Vec<u64>,
58            ) -> PolarsResult<()> {
59                self.0.vec_hash(random_state, buf)?;
60                Ok(())
61            }
62
63            fn vec_hash_combine(
64                &self,
65                build_hasher: PlSeedableRandomStateQuality,
66                hashes: &mut [u64],
67            ) -> PolarsResult<()> {
68                self.0.vec_hash_combine(build_hasher, hashes)?;
69                Ok(())
70            }
71
72            #[cfg(feature = "algorithm_group_by")]
73            unsafe fn agg_min(&self, groups: &GroupsType) -> Series {
74                self.0.agg_min(groups)
75            }
76
77            #[cfg(feature = "algorithm_group_by")]
78            unsafe fn agg_max(&self, groups: &GroupsType) -> Series {
79                self.0.agg_max(groups)
80            }
81
82            #[cfg(feature = "algorithm_group_by")]
83            unsafe fn agg_sum(&self, groups: &GroupsType) -> Series {
84                self.0.agg_sum(groups)
85            }
86
87            #[cfg(feature = "algorithm_group_by")]
88            unsafe fn agg_std(&self, groups: &GroupsType, ddof: u8) -> Series {
89                SeriesWrap::agg_std(self, groups, ddof)
90            }
91
92            #[cfg(feature = "algorithm_group_by")]
93            unsafe fn agg_var(&self, groups: &GroupsType, ddof: u8) -> Series {
94                SeriesWrap::agg_var(self, groups, ddof)
95            }
96
97            #[cfg(feature = "algorithm_group_by")]
98            unsafe fn agg_list(&self, groups: &GroupsType) -> Series {
99                self.0.agg_list(groups)
100            }
101
102            #[cfg(feature = "bitwise")]
103            unsafe fn agg_and(&self, groups: &GroupsType) -> Series {
104                self.0.agg_and(groups)
105            }
106            #[cfg(feature = "bitwise")]
107            unsafe fn agg_or(&self, groups: &GroupsType) -> Series {
108                self.0.agg_or(groups)
109            }
110            #[cfg(feature = "bitwise")]
111            unsafe fn agg_xor(&self, groups: &GroupsType) -> Series {
112                self.0.agg_xor(groups)
113            }
114
115            fn subtract(&self, rhs: &Series) -> PolarsResult<Series> {
116                NumOpsDispatch::subtract(&self.0, rhs)
117            }
118            fn add_to(&self, rhs: &Series) -> PolarsResult<Series> {
119                NumOpsDispatch::add_to(&self.0, rhs)
120            }
121            fn multiply(&self, rhs: &Series) -> PolarsResult<Series> {
122                NumOpsDispatch::multiply(&self.0, rhs)
123            }
124            fn divide(&self, rhs: &Series) -> PolarsResult<Series> {
125                NumOpsDispatch::divide(&self.0, rhs)
126            }
127            fn remainder(&self, rhs: &Series) -> PolarsResult<Series> {
128                NumOpsDispatch::remainder(&self.0, rhs)
129            }
130            #[cfg(feature = "algorithm_group_by")]
131            fn group_tuples(&self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsType> {
132                IntoGroupsType::group_tuples(&self.0, multithreaded, sorted)
133            }
134
135            fn arg_sort_multiple(
136                &self,
137                by: &[Column],
138                options: &SortMultipleOptions,
139            ) -> PolarsResult<IdxCa> {
140                self.0.arg_sort_multiple(by, options)
141            }
142        }
143
144        impl SeriesTrait for SeriesWrap<$ca> {
145            #[cfg(feature = "rolling_window")]
146            fn rolling_map(
147                &self,
148                _f: &dyn Fn(&Series) -> PolarsResult<Series>,
149                _options: RollingOptionsFixedWindow,
150            ) -> PolarsResult<Series> {
151                ChunkRollApply::rolling_map(&self.0, _f, _options).map(|ca| ca.into_series())
152            }
153
154            fn rename(&mut self, name: PlSmallStr) {
155                self.0.rename(name);
156            }
157
158            fn chunk_lengths(&self) -> ChunkLenIter<'_> {
159                self.0.chunk_lengths()
160            }
161            fn name(&self) -> &PlSmallStr {
162                self.0.name()
163            }
164
165            fn chunks(&self) -> &Vec<ArrayRef> {
166                self.0.chunks()
167            }
168            unsafe fn chunks_mut(&mut self) -> &mut Vec<ArrayRef> {
169                self.0.chunks_mut()
170            }
171            fn shrink_to_fit(&mut self) {
172                self.0.shrink_to_fit()
173            }
174
175            fn slice(&self, offset: i64, length: usize) -> Series {
176                return self.0.slice(offset, length).into_series();
177            }
178
179            fn split_at(&self, offset: i64) -> (Series, Series) {
180                let (a, b) = self.0.split_at(offset);
181                (a.into_series(), b.into_series())
182            }
183
184            fn append(&mut self, other: &Series) -> PolarsResult<()> {
185                polars_ensure!(self.0.dtype() == other.dtype(), append);
186                self.0.append(other.as_ref().as_ref())?;
187                Ok(())
188            }
189            fn append_owned(&mut self, other: Series) -> PolarsResult<()> {
190                polars_ensure!(self.0.dtype() == other.dtype(), append);
191                self.0.append_owned(other.take_inner())
192            }
193
194            fn extend(&mut self, other: &Series) -> PolarsResult<()> {
195                polars_ensure!(self.0.dtype() == other.dtype(), extend);
196                self.0.extend(other.as_ref().as_ref())?;
197                Ok(())
198            }
199
200            fn filter(&self, filter: &BooleanChunked) -> PolarsResult<Series> {
201                ChunkFilter::filter(&self.0, filter).map(|ca| ca.into_series())
202            }
203
204            fn _sum_as_f64(&self) -> f64 {
205                self.0._sum_as_f64()
206            }
207
208            fn mean(&self) -> Option<f64> {
209                self.0.mean()
210            }
211
212            fn median(&self) -> Option<f64> {
213                self.0.median().map(|v| v.as_())
214            }
215
216            fn std(&self, ddof: u8) -> Option<f64> {
217                self.0.std(ddof)
218            }
219
220            fn var(&self, ddof: u8) -> Option<f64> {
221                self.0.var(ddof)
222            }
223
224            fn take(&self, indices: &IdxCa) -> PolarsResult<Series> {
225                Ok(self.0.take(indices)?.into_series())
226            }
227
228            unsafe fn take_unchecked(&self, indices: &IdxCa) -> Series {
229                self.0.take_unchecked(indices).into_series()
230            }
231
232            fn take_slice(&self, indices: &[IdxSize]) -> PolarsResult<Series> {
233                Ok(self.0.take(indices)?.into_series())
234            }
235
236            unsafe fn take_slice_unchecked(&self, indices: &[IdxSize]) -> Series {
237                self.0.take_unchecked(indices).into_series()
238            }
239
240            fn deposit(&self, validity: &Bitmap) -> Series {
241                self.0.deposit(validity).into_series()
242            }
243
244            fn len(&self) -> usize {
245                self.0.len()
246            }
247
248            fn rechunk(&self) -> Series {
249                self.0.rechunk().into_owned().into_series()
250            }
251
252            fn new_from_index(&self, index: usize, length: usize) -> Series {
253                ChunkExpandAtIndex::new_from_index(&self.0, index, length).into_series()
254            }
255
256            fn cast(&self, dtype: &DataType, cast_options: CastOptions) -> PolarsResult<Series> {
257                self.0.cast_with_options(dtype, cast_options)
258            }
259
260            #[inline]
261            unsafe fn get_unchecked(&self, index: usize) -> AnyValue<'_> {
262                self.0.get_any_value_unchecked(index)
263            }
264
265            fn sort_with(&self, options: SortOptions) -> PolarsResult<Series> {
266                Ok(ChunkSort::sort_with(&self.0, options).into_series())
267            }
268
269            fn arg_sort(&self, options: SortOptions) -> IdxCa {
270                ChunkSort::arg_sort(&self.0, options)
271            }
272
273            fn null_count(&self) -> usize {
274                self.0.null_count()
275            }
276
277            fn has_nulls(&self) -> bool {
278                self.0.has_nulls()
279            }
280
281            #[cfg(feature = "algorithm_group_by")]
282            fn unique(&self) -> PolarsResult<Series> {
283                ChunkUnique::unique(&self.0).map(|ca| ca.into_series())
284            }
285
286            #[cfg(feature = "algorithm_group_by")]
287            fn n_unique(&self) -> PolarsResult<usize> {
288                ChunkUnique::n_unique(&self.0)
289            }
290
291            #[cfg(feature = "algorithm_group_by")]
292            fn arg_unique(&self) -> PolarsResult<IdxCa> {
293                ChunkUnique::arg_unique(&self.0)
294            }
295
296            fn unique_id(&self) -> PolarsResult<(IdxSize, Vec<IdxSize>)> {
297                ChunkUnique::unique_id(&self.0)
298            }
299
300            fn is_null(&self) -> BooleanChunked {
301                self.0.is_null()
302            }
303
304            fn is_not_null(&self) -> BooleanChunked {
305                self.0.is_not_null()
306            }
307
308            fn reverse(&self) -> Series {
309                ChunkReverse::reverse(&self.0).into_series()
310            }
311
312            fn as_single_ptr(&mut self) -> PolarsResult<usize> {
313                self.0.as_single_ptr()
314            }
315
316            fn shift(&self, periods: i64) -> Series {
317                ChunkShift::shift(&self.0, periods).into_series()
318            }
319
320            fn sum_reduce(&self) -> PolarsResult<Scalar> {
321                Ok(ChunkAggSeries::sum_reduce(&self.0))
322            }
323            fn max_reduce(&self) -> PolarsResult<Scalar> {
324                Ok(ChunkAggSeries::max_reduce(&self.0))
325            }
326            fn min_reduce(&self) -> PolarsResult<Scalar> {
327                Ok(ChunkAggSeries::min_reduce(&self.0))
328            }
329            fn mean_reduce(&self) -> PolarsResult<Scalar> {
330                let mean = self
331                    .mean()
332                    .map(AsPrimitive::<<$pdt as PolarsDataType>::OwnedPhysical>::as_);
333                Ok(Scalar::new(self.dtype().clone(), mean.into()))
334            }
335            fn median_reduce(&self) -> PolarsResult<Scalar> {
336                Ok(QuantileAggSeries::median_reduce(&self.0))
337            }
338            fn var_reduce(&self, ddof: u8) -> PolarsResult<Scalar> {
339                Ok(VarAggSeries::var_reduce(&self.0, ddof))
340            }
341            fn std_reduce(&self, ddof: u8) -> PolarsResult<Scalar> {
342                Ok(VarAggSeries::std_reduce(&self.0, ddof))
343            }
344            fn quantile_reduce(
345                &self,
346                quantile: f64,
347                method: QuantileMethod,
348            ) -> PolarsResult<Scalar> {
349                QuantileAggSeries::quantile_reduce(&self.0, quantile, method)
350            }
351            #[cfg(feature = "bitwise")]
352            fn and_reduce(&self) -> PolarsResult<Scalar> {
353                let dt = <$pdt as PolarsDataType>::get_static_dtype();
354                let av = self.0.and_reduce().map_or(AnyValue::Null, Into::into);
355
356                Ok(Scalar::new(dt, av))
357            }
358            #[cfg(feature = "bitwise")]
359            fn or_reduce(&self) -> PolarsResult<Scalar> {
360                let dt = <$pdt as PolarsDataType>::get_static_dtype();
361                let av = self.0.or_reduce().map_or(AnyValue::Null, Into::into);
362
363                Ok(Scalar::new(dt, av))
364            }
365            #[cfg(feature = "bitwise")]
366            fn xor_reduce(&self) -> PolarsResult<Scalar> {
367                let dt = <$pdt as PolarsDataType>::get_static_dtype();
368                let av = self.0.xor_reduce().map_or(AnyValue::Null, Into::into);
369
370                Ok(Scalar::new(dt, av))
371            }
372
373            #[cfg(feature = "approx_unique")]
374            fn approx_n_unique(&self) -> PolarsResult<IdxSize> {
375                Ok(ChunkApproxNUnique::approx_n_unique(&self.0))
376            }
377
378            fn clone_inner(&self) -> Arc<dyn SeriesTrait> {
379                Arc::new(SeriesWrap(Clone::clone(&self.0)))
380            }
381
382            fn find_validity_mismatch(&self, other: &Series, idxs: &mut Vec<IdxSize>) {
383                self.0.find_validity_mismatch(other, idxs)
384            }
385
386            #[cfg(feature = "checked_arithmetic")]
387            fn checked_div(&self, rhs: &Series) -> PolarsResult<Series> {
388                self.0.checked_div(rhs)
389            }
390
391            fn as_any(&self) -> &dyn Any {
392                &self.0
393            }
394
395            fn as_any_mut(&mut self) -> &mut dyn Any {
396                &mut self.0
397            }
398
399            fn as_phys_any(&self) -> &dyn Any {
400                &self.0
401            }
402
403            fn as_arc_any(self: Arc<Self>) -> Arc<dyn Any + Send + Sync> {
404                self as _
405            }
406        }
407    };
408}
409
410#[cfg(feature = "dtype-f16")]
411impl_dyn_series!(Float16Chunked, Float16Type);
412impl_dyn_series!(Float32Chunked, Float32Type);
413impl_dyn_series!(Float64Chunked, Float64Type);