polars_ops/series/ops/
horizontal.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
use std::borrow::Cow;

use polars_core::chunked_array::cast::CastOptions;
use polars_core::prelude::*;
use polars_core::series::arithmetic::coerce_lhs_rhs;
use polars_core::utils::dtypes_to_supertype;
use polars_core::{with_match_physical_numeric_polars_type, POOL};
use rayon::iter::{IntoParallelIterator, IntoParallelRefIterator, ParallelIterator};

fn validate_column_lengths(cs: &[Column]) -> PolarsResult<()> {
    let mut length = 1;
    for c in cs {
        let len = c.len();
        if len != 1 && len != length {
            if length == 1 {
                length = len;
            } else {
                polars_bail!(ShapeMismatch: "cannot evaluate two Series of different lengths ({len} and {length})");
            }
        }
    }
    Ok(())
}

pub trait MinMaxHorizontal {
    /// Aggregate the column horizontally to their min values.
    fn min_horizontal(&self) -> PolarsResult<Option<Column>>;
    /// Aggregate the column horizontally to their max values.
    fn max_horizontal(&self) -> PolarsResult<Option<Column>>;
}

impl MinMaxHorizontal for DataFrame {
    fn min_horizontal(&self) -> PolarsResult<Option<Column>> {
        min_horizontal(self.get_columns())
    }
    fn max_horizontal(&self) -> PolarsResult<Option<Column>> {
        max_horizontal(self.get_columns())
    }
}

#[derive(Copy, Clone, Debug, PartialEq)]
pub enum NullStrategy {
    Ignore,
    Propagate,
}

pub trait SumMeanHorizontal {
    /// Sum all values horizontally across columns.
    fn sum_horizontal(&self, null_strategy: NullStrategy) -> PolarsResult<Option<Column>>;

    /// Compute the mean of all numeric values horizontally across columns.
    fn mean_horizontal(&self, null_strategy: NullStrategy) -> PolarsResult<Option<Column>>;
}

impl SumMeanHorizontal for DataFrame {
    fn sum_horizontal(&self, null_strategy: NullStrategy) -> PolarsResult<Option<Column>> {
        sum_horizontal(self.get_columns(), null_strategy)
    }
    fn mean_horizontal(&self, null_strategy: NullStrategy) -> PolarsResult<Option<Column>> {
        mean_horizontal(self.get_columns(), null_strategy)
    }
}

fn min_binary<T>(left: &ChunkedArray<T>, right: &ChunkedArray<T>) -> ChunkedArray<T>
where
    T: PolarsNumericType,
    T::Native: PartialOrd,
{
    let op = |l: T::Native, r: T::Native| {
        if l < r {
            l
        } else {
            r
        }
    };
    arity::binary_elementwise_values(left, right, op)
}

fn max_binary<T>(left: &ChunkedArray<T>, right: &ChunkedArray<T>) -> ChunkedArray<T>
where
    T: PolarsNumericType,
    T::Native: PartialOrd,
{
    let op = |l: T::Native, r: T::Native| {
        if l > r {
            l
        } else {
            r
        }
    };
    arity::binary_elementwise_values(left, right, op)
}

fn min_max_binary_columns(left: &Column, right: &Column, min: bool) -> PolarsResult<Column> {
    if left.dtype().to_physical().is_primitive_numeric()
        && left.null_count() == 0
        && right.null_count() == 0
        && left.len() == right.len()
    {
        match (left, right) {
            (Column::Series(left), Column::Series(right)) => {
                let (lhs, rhs) = coerce_lhs_rhs(left, right)?;
                let logical = lhs.dtype();
                let lhs = lhs.to_physical_repr();
                let rhs = rhs.to_physical_repr();

                with_match_physical_numeric_polars_type!(lhs.dtype(), |$T| {
                    let a: &ChunkedArray<$T> = lhs.as_ref().as_ref().as_ref();
                    let b: &ChunkedArray<$T> = rhs.as_ref().as_ref().as_ref();

                    unsafe {
                        if min {
                            min_binary(a, b).into_series().from_physical_unchecked(logical)
                        } else {
                            max_binary(a, b).into_series().from_physical_unchecked(logical)
                        }
                    }
                })
                .map(Column::from)
            },
            _ => {
                let mask = if min {
                    left.lt(right)?
                } else {
                    left.gt(right)?
                };

                left.zip_with(&mask, right)
            },
        }
    } else {
        let mask = if min {
            left.lt(right)? & left.is_not_null() | right.is_null()
        } else {
            left.gt(right)? & left.is_not_null() | right.is_null()
        };
        left.zip_with(&mask, right)
    }
}

pub fn max_horizontal(columns: &[Column]) -> PolarsResult<Option<Column>> {
    validate_column_lengths(columns)?;

    let max_fn = |acc: &Column, s: &Column| min_max_binary_columns(acc, s, false);

    match columns.len() {
        0 => Ok(None),
        1 => Ok(Some(columns[0].clone())),
        2 => max_fn(&columns[0], &columns[1]).map(Some),
        _ => {
            // the try_reduce_with is a bit slower in parallelism,
            // but I don't think it matters here as we parallelize over columns, not over elements
            POOL.install(|| {
                columns
                    .par_iter()
                    .map(|s| Ok(Cow::Borrowed(s)))
                    .try_reduce_with(|l, r| max_fn(&l, &r).map(Cow::Owned))
                    // we can unwrap the option, because we are certain there is a column
                    // we started this operation on 3 columns
                    .unwrap()
                    .map(|cow| Some(cow.into_owned()))
            })
        },
    }
}

pub fn min_horizontal(columns: &[Column]) -> PolarsResult<Option<Column>> {
    validate_column_lengths(columns)?;

    let min_fn = |acc: &Column, s: &Column| min_max_binary_columns(acc, s, true);

    match columns.len() {
        0 => Ok(None),
        1 => Ok(Some(columns[0].clone())),
        2 => min_fn(&columns[0], &columns[1]).map(Some),
        _ => {
            // the try_reduce_with is a bit slower in parallelism,
            // but I don't think it matters here as we parallelize over columns, not over elements
            POOL.install(|| {
                columns
                    .par_iter()
                    .map(|s| Ok(Cow::Borrowed(s)))
                    .try_reduce_with(|l, r| min_fn(&l, &r).map(Cow::Owned))
                    // we can unwrap the option, because we are certain there is a column
                    // we started this operation on 3 columns
                    .unwrap()
                    .map(|cow| Some(cow.into_owned()))
            })
        },
    }
}

pub fn sum_horizontal(
    columns: &[Column],
    null_strategy: NullStrategy,
) -> PolarsResult<Option<Column>> {
    validate_column_lengths(columns)?;
    let ignore_nulls = null_strategy == NullStrategy::Ignore;

    let apply_null_strategy = |s: Series| -> PolarsResult<Series> {
        if ignore_nulls && s.null_count() > 0 {
            s.fill_null(FillNullStrategy::Zero)
        } else {
            Ok(s)
        }
    };

    let sum_fn = |acc: Series, s: Series| -> PolarsResult<Series> {
        let acc: Series = apply_null_strategy(acc)?;
        let s = apply_null_strategy(s)?;
        // This will do owned arithmetic and can be mutable
        std::ops::Add::add(acc, s)
    };

    // @scalar-opt
    let non_null_cols = columns
        .iter()
        .filter(|x| x.dtype() != &DataType::Null)
        .map(|c| c.as_materialized_series())
        .collect::<Vec<_>>();

    // If we have any null columns and null strategy is not `Ignore`, we can return immediately.
    if !ignore_nulls && non_null_cols.len() < columns.len() {
        // We must determine the correct return dtype.
        let return_dtype = match dtypes_to_supertype(non_null_cols.iter().map(|c| c.dtype()))? {
            DataType::Boolean => IDX_DTYPE,
            dt => dt,
        };
        return Ok(Some(Column::full_null(
            columns[0].name().clone(),
            columns[0].len(),
            &return_dtype,
        )));
    }

    match non_null_cols.len() {
        0 => {
            if columns.is_empty() {
                Ok(None)
            } else {
                // all columns are null dtype, so result is null dtype
                Ok(Some(columns[0].clone()))
            }
        },
        1 => Ok(Some(
            apply_null_strategy(if non_null_cols[0].dtype() == &DataType::Boolean {
                non_null_cols[0].cast(&IDX_DTYPE)?
            } else {
                non_null_cols[0].clone()
            })?
            .into(),
        )),
        2 => sum_fn(non_null_cols[0].clone(), non_null_cols[1].clone())
            .map(Column::from)
            .map(Some),
        _ => {
            // the try_reduce_with is a bit slower in parallelism,
            // but I don't think it matters here as we parallelize over columns, not over elements
            let out = POOL.install(|| {
                non_null_cols
                    .into_par_iter()
                    .cloned()
                    .map(Ok)
                    .try_reduce_with(sum_fn)
                    // We can unwrap because we started with at least 3 columns, so we always get a Some
                    .unwrap()
            });
            out.map(Column::from).map(Some)
        },
    }
}

pub fn mean_horizontal(
    columns: &[Column],
    null_strategy: NullStrategy,
) -> PolarsResult<Option<Column>> {
    validate_column_lengths(columns)?;

    let (numeric_columns, non_numeric_columns): (Vec<_>, Vec<_>) = columns.iter().partition(|s| {
        let dtype = s.dtype();
        dtype.is_primitive_numeric() || dtype.is_decimal() || dtype.is_bool() || dtype.is_null()
    });

    if !non_numeric_columns.is_empty() {
        let col = non_numeric_columns.first().cloned();
        polars_bail!(
            InvalidOperation: "'horizontal_mean' expects numeric expressions, found {:?} (dtype={})",
            col.unwrap().name(),
            col.unwrap().dtype(),
        );
    }
    let columns = numeric_columns.into_iter().cloned().collect::<Vec<_>>();
    let num_rows = columns.len();
    match num_rows {
        0 => Ok(None),
        1 => Ok(Some(match columns[0].dtype() {
            dt if dt != &DataType::Float32 && !dt.is_decimal() => {
                columns[0].cast(&DataType::Float64)?
            },
            _ => columns[0].clone(),
        })),
        _ => {
            let sum = || sum_horizontal(columns.as_slice(), null_strategy);
            let null_count = || {
                columns
                    .par_iter()
                    .map(|c| {
                        c.is_null()
                            .into_column()
                            .cast_with_options(&DataType::UInt32, CastOptions::NonStrict)
                    })
                    .reduce_with(|l, r| {
                        let l = l?;
                        let r = r?;
                        let result = std::ops::Add::add(&l, &r)?;
                        PolarsResult::Ok(result)
                    })
                    // we can unwrap the option, because we are certain there is a column
                    // we started this operation on 2 columns
                    .unwrap()
            };

            let (sum, null_count) = POOL.install(|| rayon::join(sum, null_count));
            let sum = sum?;
            let null_count = null_count?;

            // value lengths: len - null_count
            let value_length: UInt32Chunked = (Column::new_scalar(
                PlSmallStr::EMPTY,
                Scalar::from(num_rows as u32),
                null_count.len(),
            ) - null_count)?
                .u32()
                .unwrap()
                .clone();

            // make sure that we do not divide by zero
            // by replacing with None
            let dt = if sum
                .as_ref()
                .is_some_and(|s| s.dtype() == &DataType::Float32)
            {
                &DataType::Float32
            } else {
                &DataType::Float64
            };
            let value_length = value_length
                .set(&value_length.equal(0), None)?
                .into_column()
                .cast(dt)?;

            sum.map(|sum| std::ops::Div::div(&sum, &value_length))
                .transpose()
        },
    }
}

pub fn coalesce_columns(s: &[Column]) -> PolarsResult<Column> {
    // TODO! this can be faster if we have more than two inputs.
    polars_ensure!(!s.is_empty(), NoData: "cannot coalesce empty list");
    let mut out = s[0].clone();
    for s in s {
        if !out.null_count() == 0 {
            return Ok(out);
        } else {
            let mask = out.is_not_null();
            out = out
                .as_materialized_series()
                .zip_with_same_type(&mask, s.as_materialized_series())?
                .into();
        }
    }
    Ok(out)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[cfg_attr(miri, ignore)]
    fn test_horizontal_agg() {
        let a = Column::new("a".into(), [1, 2, 6]);
        let b = Column::new("b".into(), [Some(1), None, None]);
        let c = Column::new("c".into(), [Some(4), None, Some(3)]);

        let df = DataFrame::new(vec![a, b, c]).unwrap();
        assert_eq!(
            Vec::from(
                df.mean_horizontal(NullStrategy::Ignore)
                    .unwrap()
                    .unwrap()
                    .f64()
                    .unwrap()
            ),
            &[Some(2.0), Some(2.0), Some(4.5)]
        );
        assert_eq!(
            Vec::from(
                df.sum_horizontal(NullStrategy::Ignore)
                    .unwrap()
                    .unwrap()
                    .i32()
                    .unwrap()
            ),
            &[Some(6), Some(2), Some(9)]
        );
        assert_eq!(
            Vec::from(df.min_horizontal().unwrap().unwrap().i32().unwrap()),
            &[Some(1), Some(2), Some(3)]
        );
        assert_eq!(
            Vec::from(df.max_horizontal().unwrap().unwrap().i32().unwrap()),
            &[Some(4), Some(2), Some(6)]
        );
    }
}