polars_core/series/implementations/
decimal.rs

1use polars_compute::rolling::QuantileMethod;
2
3use super::*;
4use crate::prelude::*;
5
6unsafe impl IntoSeries for DecimalChunked {
7    fn into_series(self) -> Series {
8        Series(Arc::new(SeriesWrap(self)))
9    }
10}
11
12impl private::PrivateSeriesNumeric for SeriesWrap<DecimalChunked> {
13    fn bit_repr(&self) -> Option<BitRepr> {
14        Some(self.0.physical().to_bit_repr())
15    }
16}
17
18impl SeriesWrap<DecimalChunked> {
19    fn apply_physical_to_s<F: Fn(&Int128Chunked) -> Int128Chunked>(&self, f: F) -> Series {
20        f(self.0.physical())
21            .into_decimal_unchecked(self.0.precision(), self.0.scale())
22            .into_series()
23    }
24
25    fn apply_physical<T, F: Fn(&Int128Chunked) -> T>(&self, f: F) -> T {
26        f(self.0.physical())
27    }
28
29    fn scale_factor(&self) -> u128 {
30        10u128.pow(self.0.scale() as u32)
31    }
32
33    fn apply_scale(&self, mut scalar: Scalar) -> Scalar {
34        if scalar.is_null() {
35            return scalar;
36        }
37
38        debug_assert_eq!(scalar.dtype(), &DataType::Float64);
39        let v = scalar
40            .value()
41            .try_extract::<f64>()
42            .expect("should be f64 scalar");
43        scalar.update((v / self.scale_factor() as f64).into());
44        scalar
45    }
46
47    fn agg_helper<F: Fn(&Int128Chunked) -> Series>(&self, f: F) -> Series {
48        let agg_s = f(self.0.physical());
49        match agg_s.dtype() {
50            DataType::Int128 => {
51                let ca = agg_s.i128().unwrap();
52                let ca = ca.as_ref().clone();
53                let precision = self.0.precision();
54                let scale = self.0.scale();
55                ca.into_decimal_unchecked(precision, scale).into_series()
56            },
57            DataType::List(dtype) if matches!(dtype.as_ref(), DataType::Int128) => {
58                let dtype = self.0.dtype();
59                let ca = agg_s.list().unwrap();
60                let arr = ca.downcast_iter().next().unwrap();
61                // SAFETY: dtype is passed correctly
62                let precision = self.0.precision();
63                let scale = self.0.scale();
64                let s = unsafe {
65                    Series::from_chunks_and_dtype_unchecked(
66                        PlSmallStr::EMPTY,
67                        vec![arr.values().clone()],
68                        dtype,
69                    )
70                }
71                .into_decimal(precision, scale)
72                .unwrap();
73                let new_values = s.array_ref(0).clone();
74                let dtype = DataType::Int128;
75                let arrow_dtype =
76                    ListArray::<i64>::default_datatype(dtype.to_arrow(CompatLevel::newest()));
77                let new_arr = ListArray::<i64>::new(
78                    arrow_dtype,
79                    arr.offsets().clone(),
80                    new_values,
81                    arr.validity().cloned(),
82                );
83                unsafe {
84                    ListChunked::from_chunks_and_dtype_unchecked(
85                        agg_s.name().clone(),
86                        vec![Box::new(new_arr)],
87                        DataType::List(Box::new(DataType::Decimal(precision, scale))),
88                    )
89                    .into_series()
90                }
91            },
92            _ => unreachable!(),
93        }
94    }
95}
96
97impl private::PrivateSeries for SeriesWrap<DecimalChunked> {
98    fn compute_len(&mut self) {
99        self.0.physical_mut().compute_len()
100    }
101
102    fn _field(&self) -> Cow<'_, Field> {
103        Cow::Owned(self.0.field())
104    }
105
106    fn _dtype(&self) -> &DataType {
107        self.0.dtype()
108    }
109    fn _get_flags(&self) -> StatisticsFlags {
110        self.0.physical().get_flags()
111    }
112    fn _set_flags(&mut self, flags: StatisticsFlags) {
113        self.0.physical_mut().set_flags(flags)
114    }
115
116    #[cfg(feature = "zip_with")]
117    fn zip_with_same_type(&self, mask: &BooleanChunked, other: &Series) -> PolarsResult<Series> {
118        let other = other.decimal()?;
119
120        Ok(self
121            .0
122            .physical()
123            .zip_with(mask, other.physical())?
124            .into_decimal_unchecked(self.0.precision(), self.0.scale())
125            .into_series())
126    }
127    fn into_total_eq_inner<'a>(&'a self) -> Box<dyn TotalEqInner + 'a> {
128        self.0.physical().into_total_eq_inner()
129    }
130    fn into_total_ord_inner<'a>(&'a self) -> Box<dyn TotalOrdInner + 'a> {
131        self.0.physical().into_total_ord_inner()
132    }
133
134    fn vec_hash(
135        &self,
136        random_state: PlSeedableRandomStateQuality,
137        buf: &mut Vec<u64>,
138    ) -> PolarsResult<()> {
139        self.0.physical().vec_hash(random_state, buf)?;
140        Ok(())
141    }
142
143    fn vec_hash_combine(
144        &self,
145        build_hasher: PlSeedableRandomStateQuality,
146        hashes: &mut [u64],
147    ) -> PolarsResult<()> {
148        self.0.physical().vec_hash_combine(build_hasher, hashes)?;
149        Ok(())
150    }
151
152    #[cfg(feature = "algorithm_group_by")]
153    unsafe fn agg_sum(&self, groups: &GroupsType) -> Series {
154        self.agg_helper(|ca| ca.agg_sum(groups))
155    }
156
157    #[cfg(feature = "algorithm_group_by")]
158    unsafe fn agg_min(&self, groups: &GroupsType) -> Series {
159        self.agg_helper(|ca| ca.agg_min(groups))
160    }
161
162    #[cfg(feature = "algorithm_group_by")]
163    unsafe fn agg_max(&self, groups: &GroupsType) -> Series {
164        self.agg_helper(|ca| ca.agg_max(groups))
165    }
166
167    #[cfg(feature = "algorithm_group_by")]
168    unsafe fn agg_arg_min(&self, groups: &GroupsType) -> Series {
169        self.0.physical().agg_arg_min(groups)
170    }
171
172    #[cfg(feature = "algorithm_group_by")]
173    unsafe fn agg_arg_max(&self, groups: &GroupsType) -> Series {
174        self.0.physical().agg_arg_max(groups)
175    }
176
177    #[cfg(feature = "algorithm_group_by")]
178    unsafe fn agg_list(&self, groups: &GroupsType) -> Series {
179        self.agg_helper(|ca| ca.agg_list(groups))
180    }
181
182    #[cfg(feature = "algorithm_group_by")]
183    unsafe fn agg_var(&self, groups: &GroupsType, ddof: u8) -> Series {
184        self.0
185            .cast(&DataType::Float64)
186            .unwrap()
187            .agg_var(groups, ddof)
188    }
189
190    #[cfg(feature = "algorithm_group_by")]
191    unsafe fn agg_std(&self, groups: &GroupsType, ddof: u8) -> Series {
192        self.0
193            .cast(&DataType::Float64)
194            .unwrap()
195            .agg_std(groups, ddof)
196    }
197
198    fn subtract(&self, rhs: &Series) -> PolarsResult<Series> {
199        let rhs = rhs.decimal()?;
200        ((&self.0) - rhs).map(|ca| ca.into_series())
201    }
202    fn add_to(&self, rhs: &Series) -> PolarsResult<Series> {
203        let rhs = rhs.decimal()?;
204        ((&self.0) + rhs).map(|ca| ca.into_series())
205    }
206    fn multiply(&self, rhs: &Series) -> PolarsResult<Series> {
207        let rhs = rhs.decimal()?;
208        ((&self.0) * rhs).map(|ca| ca.into_series())
209    }
210    fn divide(&self, rhs: &Series) -> PolarsResult<Series> {
211        let rhs = rhs.decimal()?;
212        ((&self.0) / rhs).map(|ca| ca.into_series())
213    }
214    #[cfg(feature = "algorithm_group_by")]
215    fn group_tuples(&self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsType> {
216        self.0.physical().group_tuples(multithreaded, sorted)
217    }
218    fn arg_sort_multiple(
219        &self,
220        by: &[Column],
221        options: &SortMultipleOptions,
222    ) -> PolarsResult<IdxCa> {
223        self.0.physical().arg_sort_multiple(by, options)
224    }
225}
226
227impl SeriesTrait for SeriesWrap<DecimalChunked> {
228    fn rename(&mut self, name: PlSmallStr) {
229        self.0.rename(name)
230    }
231
232    fn chunk_lengths(&self) -> ChunkLenIter<'_> {
233        self.0.physical().chunk_lengths()
234    }
235
236    fn name(&self) -> &PlSmallStr {
237        self.0.name()
238    }
239
240    fn chunks(&self) -> &Vec<ArrayRef> {
241        self.0.physical().chunks()
242    }
243    unsafe fn chunks_mut(&mut self) -> &mut Vec<ArrayRef> {
244        self.0.physical_mut().chunks_mut()
245    }
246
247    fn slice(&self, offset: i64, length: usize) -> Series {
248        self.apply_physical_to_s(|ca| ca.slice(offset, length))
249    }
250
251    fn split_at(&self, offset: i64) -> (Series, Series) {
252        let (a, b) = self.0.split_at(offset);
253        (a.into_series(), b.into_series())
254    }
255
256    fn append(&mut self, other: &Series) -> PolarsResult<()> {
257        polars_ensure!(self.0.dtype() == other.dtype(), append);
258        let mut other = other.to_physical_repr().into_owned();
259        self.0
260            .physical_mut()
261            .append_owned(std::mem::take(other._get_inner_mut().as_mut()))
262    }
263    fn append_owned(&mut self, mut other: Series) -> PolarsResult<()> {
264        polars_ensure!(self.0.dtype() == other.dtype(), append);
265        self.0.physical_mut().append_owned(std::mem::take(
266            &mut other
267                ._get_inner_mut()
268                .as_any_mut()
269                .downcast_mut::<DecimalChunked>()
270                .unwrap()
271                .phys,
272        ))
273    }
274
275    fn extend(&mut self, other: &Series) -> PolarsResult<()> {
276        polars_ensure!(self.0.dtype() == other.dtype(), extend);
277        // 3 refs
278        // ref Cow
279        // ref SeriesTrait
280        // ref ChunkedArray
281        let other = other.to_physical_repr();
282        self.0
283            .physical_mut()
284            .extend(other.as_ref().as_ref().as_ref())?;
285        Ok(())
286    }
287
288    fn filter(&self, filter: &BooleanChunked) -> PolarsResult<Series> {
289        Ok(self
290            .0
291            .physical()
292            .filter(filter)?
293            .into_decimal_unchecked(self.0.precision(), self.0.scale())
294            .into_series())
295    }
296
297    fn take(&self, indices: &IdxCa) -> PolarsResult<Series> {
298        Ok(self
299            .0
300            .physical()
301            .take(indices)?
302            .into_decimal_unchecked(self.0.precision(), self.0.scale())
303            .into_series())
304    }
305
306    unsafe fn take_unchecked(&self, indices: &IdxCa) -> Series {
307        self.0
308            .physical()
309            .take_unchecked(indices)
310            .into_decimal_unchecked(self.0.precision(), self.0.scale())
311            .into_series()
312    }
313
314    fn take_slice(&self, indices: &[IdxSize]) -> PolarsResult<Series> {
315        Ok(self
316            .0
317            .physical()
318            .take(indices)?
319            .into_decimal_unchecked(self.0.precision(), self.0.scale())
320            .into_series())
321    }
322
323    unsafe fn take_slice_unchecked(&self, indices: &[IdxSize]) -> Series {
324        self.0
325            .physical()
326            .take_unchecked(indices)
327            .into_decimal_unchecked(self.0.precision(), self.0.scale())
328            .into_series()
329    }
330
331    fn deposit(&self, validity: &Bitmap) -> Series {
332        self.0
333            .physical()
334            .deposit(validity)
335            .into_decimal_unchecked(self.0.precision(), self.0.scale())
336            .into_series()
337    }
338
339    fn len(&self) -> usize {
340        self.0.len()
341    }
342
343    fn rechunk(&self) -> Series {
344        let ca = self.0.physical().rechunk().into_owned();
345        ca.into_decimal_unchecked(self.0.precision(), self.0.scale())
346            .into_series()
347    }
348
349    fn new_from_index(&self, index: usize, length: usize) -> Series {
350        self.0
351            .physical()
352            .new_from_index(index, length)
353            .into_decimal_unchecked(self.0.precision(), self.0.scale())
354            .into_series()
355    }
356
357    fn cast(&self, dtype: &DataType, cast_options: CastOptions) -> PolarsResult<Series> {
358        self.0.cast_with_options(dtype, cast_options)
359    }
360
361    #[inline]
362    unsafe fn get_unchecked(&self, index: usize) -> AnyValue<'_> {
363        self.0.get_any_value_unchecked(index)
364    }
365
366    fn sort_with(&self, options: SortOptions) -> PolarsResult<Series> {
367        Ok(self
368            .0
369            .physical()
370            .sort_with(options)
371            .into_decimal_unchecked(self.0.precision(), self.0.scale())
372            .into_series())
373    }
374
375    fn arg_sort(&self, options: SortOptions) -> IdxCa {
376        self.0.physical().arg_sort(options)
377    }
378
379    fn null_count(&self) -> usize {
380        self.0.null_count()
381    }
382
383    fn has_nulls(&self) -> bool {
384        self.0.has_nulls()
385    }
386
387    #[cfg(feature = "algorithm_group_by")]
388    fn unique(&self) -> PolarsResult<Series> {
389        Ok(self.apply_physical_to_s(|ca| ca.unique().unwrap()))
390    }
391
392    #[cfg(feature = "algorithm_group_by")]
393    fn n_unique(&self) -> PolarsResult<usize> {
394        self.0.physical().n_unique()
395    }
396
397    #[cfg(feature = "algorithm_group_by")]
398    fn arg_unique(&self) -> PolarsResult<IdxCa> {
399        self.0.physical().arg_unique()
400    }
401
402    fn unique_id(&self) -> PolarsResult<(IdxSize, Vec<IdxSize>)> {
403        ChunkUnique::unique_id(self.0.physical())
404    }
405
406    fn is_null(&self) -> BooleanChunked {
407        self.0.is_null()
408    }
409
410    fn is_not_null(&self) -> BooleanChunked {
411        self.0.is_not_null()
412    }
413
414    fn reverse(&self) -> Series {
415        self.apply_physical_to_s(|ca| ca.reverse())
416    }
417
418    fn shift(&self, periods: i64) -> Series {
419        self.apply_physical_to_s(|ca| ca.shift(periods))
420    }
421
422    #[cfg(feature = "approx_unique")]
423    fn approx_n_unique(&self) -> PolarsResult<IdxSize> {
424        Ok(ChunkApproxNUnique::approx_n_unique(self.0.physical()))
425    }
426
427    fn clone_inner(&self) -> Arc<dyn SeriesTrait> {
428        Arc::new(SeriesWrap(Clone::clone(&self.0)))
429    }
430
431    fn sum_reduce(&self) -> PolarsResult<Scalar> {
432        Ok(self.apply_physical(|ca| {
433            let sum = ca.sum();
434            let DataType::Decimal(prec, scale) = self.dtype() else {
435                unreachable!()
436            };
437            let av = AnyValue::Decimal(sum.unwrap(), *prec, *scale);
438            Scalar::new(self.dtype().clone(), av)
439        }))
440    }
441
442    fn min_reduce(&self) -> PolarsResult<Scalar> {
443        Ok(self.apply_physical(|ca| {
444            let min = ca.min();
445            let DataType::Decimal(prec, scale) = self.dtype() else {
446                unreachable!()
447            };
448            let av = if let Some(min) = min {
449                AnyValue::Decimal(min, *prec, *scale)
450            } else {
451                AnyValue::Null
452            };
453            Scalar::new(self.dtype().clone(), av)
454        }))
455    }
456
457    fn max_reduce(&self) -> PolarsResult<Scalar> {
458        Ok(self.apply_physical(|ca| {
459            let max = ca.max();
460            let DataType::Decimal(prec, scale) = self.dtype() else {
461                unreachable!()
462            };
463            let av = if let Some(m) = max {
464                AnyValue::Decimal(m, *prec, *scale)
465            } else {
466                AnyValue::Null
467            };
468            Scalar::new(self.dtype().clone(), av)
469        }))
470    }
471
472    fn _sum_as_f64(&self) -> f64 {
473        self.0.physical()._sum_as_f64() / self.scale_factor() as f64
474    }
475
476    fn mean(&self) -> Option<f64> {
477        self.0
478            .physical()
479            .mean()
480            .map(|v| v / self.scale_factor() as f64)
481    }
482    fn mean_reduce(&self) -> PolarsResult<Scalar> {
483        Ok(Scalar::new(DataType::Float64, self.mean().into()))
484    }
485
486    fn median(&self) -> Option<f64> {
487        self.0
488            .physical()
489            .median()
490            .map(|v| v / self.scale_factor() as f64)
491    }
492
493    fn median_reduce(&self) -> PolarsResult<Scalar> {
494        Ok(self.apply_scale(self.0.physical().median_reduce()))
495    }
496
497    fn std(&self, ddof: u8) -> Option<f64> {
498        self.0.cast(&DataType::Float64).ok()?.std(ddof)
499    }
500
501    fn std_reduce(&self, ddof: u8) -> PolarsResult<Scalar> {
502        self.0.cast(&DataType::Float64)?.std_reduce(ddof)
503    }
504
505    fn var(&self, ddof: u8) -> Option<f64> {
506        self.0.cast(&DataType::Float64).ok()?.var(ddof)
507    }
508
509    fn var_reduce(&self, ddof: u8) -> PolarsResult<Scalar> {
510        self.0.cast(&DataType::Float64)?.var_reduce(ddof)
511    }
512
513    fn quantile_reduce(&self, quantile: f64, method: QuantileMethod) -> PolarsResult<Scalar> {
514        self.0
515            .physical()
516            .quantile_reduce(quantile, method)
517            .map(|v| self.apply_scale(v))
518    }
519
520    fn quantiles_reduce(&self, quantiles: &[f64], method: QuantileMethod) -> PolarsResult<Scalar> {
521        let result = self.0.physical().quantiles_reduce(quantiles, method)?;
522        if let AnyValue::List(float_s) = result.value() {
523            let scale_factor = self.scale_factor() as f64;
524            let float_ca = float_s.f64().unwrap();
525            let scaled_s = float_ca
526                .iter()
527                .map(|v: Option<f64>| v.map(|f| f / scale_factor))
528                .collect::<Float64Chunked>()
529                .into_series();
530            Ok(Scalar::new(
531                DataType::List(Box::new(self.dtype().clone())),
532                AnyValue::List(scaled_s),
533            ))
534        } else {
535            polars_bail!(ComputeError: "expected list scalar from quantiles_reduce")
536        }
537    }
538
539    fn find_validity_mismatch(&self, other: &Series, idxs: &mut Vec<IdxSize>) {
540        self.0.physical().find_validity_mismatch(other, idxs)
541    }
542
543    fn as_any(&self) -> &dyn Any {
544        &self.0
545    }
546
547    fn as_any_mut(&mut self) -> &mut dyn Any {
548        &mut self.0
549    }
550
551    fn as_phys_any(&self) -> &dyn Any {
552        self.0.physical()
553    }
554
555    fn as_arc_any(self: Arc<Self>) -> Arc<dyn Any + Send + Sync> {
556        self as _
557    }
558}