polars_core/chunked_array/ops/
append.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
use polars_error::constants::LENGTH_LIMIT_MSG;

use crate::prelude::*;
use crate::series::IsSorted;

pub(crate) fn new_chunks(chunks: &mut Vec<ArrayRef>, other: &[ArrayRef], len: usize) {
    // Replace an empty array.
    if chunks.len() == 1 && len == 0 {
        other.clone_into(chunks);
    } else {
        for chunk in other {
            if chunk.len() > 0 {
                chunks.push(chunk.clone());
            }
        }
    }
}

pub(crate) fn new_chunks_owned(chunks: &mut Vec<ArrayRef>, other: Vec<ArrayRef>, len: usize) {
    // Replace an empty array.
    if chunks.len() == 1 && len == 0 {
        *chunks = other;
    } else {
        chunks.reserve(other.len());
        chunks.extend(other.into_iter().filter(|c| c.len() > 0));
    }
}

pub(super) fn update_sorted_flag_before_append<T>(ca: &mut ChunkedArray<T>, other: &ChunkedArray<T>)
where
    T: PolarsDataType,
    for<'a> T::Physical<'a>: TotalOrd,
{
    // Note: Do not call (first|last)_non_null on an array here before checking
    // it is sorted, otherwise it will lead to quadratic behavior.
    let sorted_flag = match (
        ca.null_count() != ca.len(),
        other.null_count() != other.len(),
    ) {
        (false, false) => IsSorted::Ascending,
        (false, true) => {
            if
            // lhs is empty, just take sorted flag from rhs
            ca.is_empty()
                || (
                    // lhs is non-empty and all-null, so rhs must have nulls ordered first
                    other.is_sorted_any() && 1 + other.last_non_null().unwrap() == other.len()
                )
            {
                other.is_sorted_flag()
            } else {
                IsSorted::Not
            }
        },
        (true, false) => {
            if
            // rhs is empty, just take sorted flag from lhs
            other.is_empty()
                || (
                    // rhs is non-empty and all-null, so lhs must have nulls ordered last
                    ca.is_sorted_any() && ca.first_non_null().unwrap() == 0
                )
            {
                ca.is_sorted_flag()
            } else {
                IsSorted::Not
            }
        },
        (true, true) => {
            // both arrays have non-null values.
            // for arrays of unit length we can ignore the sorted flag, as it is
            // not necessarily set.
            if !(ca.is_sorted_any() || ca.len() == 1)
                || !(other.is_sorted_any() || other.len() == 1)
                || !(
                    // We will coerce for single values
                    ca.len() - ca.null_count() == 1
                        || other.len() - other.null_count() == 1
                        || ca.is_sorted_flag() == other.is_sorted_flag()
                )
            {
                IsSorted::Not
            } else {
                let l_idx = ca.last_non_null().unwrap();
                let r_idx = other.first_non_null().unwrap();

                let null_pos_check =
                    // check null positions
                    // lhs does not end in nulls
                    (1 + l_idx == ca.len())
                    // rhs does not start with nulls
                    && (r_idx == 0)
                    // if there are nulls, they are all on one end
                    && !(ca.first_non_null().unwrap() != 0 && 1 + other.last_non_null().unwrap() != other.len());

                if !null_pos_check {
                    IsSorted::Not
                } else {
                    #[allow(unused_assignments)]
                    let mut out = IsSorted::Not;

                    // This can be relatively expensive because of chunks, so delay as much as possible.
                    let l_val = unsafe { ca.value_unchecked(l_idx) };
                    let r_val = unsafe { other.value_unchecked(r_idx) };

                    match (
                        ca.len() - ca.null_count() == 1,
                        other.len() - other.null_count() == 1,
                    ) {
                        (true, true) => {
                            out = [IsSorted::Descending, IsSorted::Ascending]
                                [l_val.tot_le(&r_val) as usize];
                            drop(l_val);
                            drop(r_val);
                            ca.set_sorted_flag(out);
                            return;
                        },
                        (true, false) => out = other.is_sorted_flag(),
                        _ => out = ca.is_sorted_flag(),
                    }

                    debug_assert!(!matches!(out, IsSorted::Not));

                    let check = if matches!(out, IsSorted::Ascending) {
                        l_val.tot_le(&r_val)
                    } else {
                        l_val.tot_ge(&r_val)
                    };

                    if !check {
                        out = IsSorted::Not
                    }

                    out
                }
            }
        },
    };

    ca.set_sorted_flag(sorted_flag);
}

impl<T> ChunkedArray<T>
where
    T: PolarsDataType<IsNested = FalseT, IsObject = FalseT>,
    for<'a> T::Physical<'a>: TotalOrd,
{
    /// Append in place. This is done by adding the chunks of `other` to this [`ChunkedArray`].
    ///
    /// See also [`extend`](Self::extend) for appends to the underlying memory
    pub fn append(&mut self, other: &Self) -> PolarsResult<()> {
        self.append_owned(other.clone())
    }

    /// Append in place. This is done by adding the chunks of `other` to this [`ChunkedArray`].
    ///
    /// See also [`extend`](Self::extend) for appends to the underlying memory
    pub fn append_owned(&mut self, mut other: Self) -> PolarsResult<()> {
        update_sorted_flag_before_append::<T>(self, &other);
        let len = self.len();
        self.length = self
            .length
            .checked_add(other.length)
            .ok_or_else(|| polars_err!(ComputeError: LENGTH_LIMIT_MSG))?;
        self.null_count += other.null_count;
        new_chunks_owned(&mut self.chunks, std::mem::take(&mut other.chunks), len);
        Ok(())
    }
}

#[doc(hidden)]
impl ListChunked {
    pub fn append(&mut self, other: &Self) -> PolarsResult<()> {
        self.append_owned(other.clone())
    }

    pub fn append_owned(&mut self, mut other: Self) -> PolarsResult<()> {
        let dtype = merge_dtypes(self.dtype(), other.dtype())?;
        self.field = Arc::new(Field::new(self.name().clone(), dtype));

        let len = self.len();
        self.length = self
            .length
            .checked_add(other.length)
            .ok_or_else(|| polars_err!(ComputeError: LENGTH_LIMIT_MSG))?;
        self.null_count += other.null_count;
        self.set_sorted_flag(IsSorted::Not);
        if !other.get_fast_explode_list() {
            self.unset_fast_explode_list()
        }

        new_chunks_owned(&mut self.chunks, std::mem::take(&mut other.chunks), len);
        Ok(())
    }
}

#[cfg(feature = "dtype-array")]
#[doc(hidden)]
impl ArrayChunked {
    pub fn append(&mut self, other: &Self) -> PolarsResult<()> {
        self.append_owned(other.clone())
    }

    pub fn append_owned(&mut self, mut other: Self) -> PolarsResult<()> {
        let dtype = merge_dtypes(self.dtype(), other.dtype())?;
        self.field = Arc::new(Field::new(self.name().clone(), dtype));

        let len = self.len();

        self.length = self
            .length
            .checked_add(other.length)
            .ok_or_else(|| polars_err!(ComputeError: LENGTH_LIMIT_MSG))?;
        self.null_count += other.null_count;

        self.set_sorted_flag(IsSorted::Not);

        new_chunks_owned(&mut self.chunks, std::mem::take(&mut other.chunks), len);
        Ok(())
    }
}

#[cfg(feature = "dtype-struct")]
#[doc(hidden)]
impl StructChunked {
    pub fn append(&mut self, other: &Self) -> PolarsResult<()> {
        self.append_owned(other.clone())
    }

    pub fn append_owned(&mut self, mut other: Self) -> PolarsResult<()> {
        let dtype = merge_dtypes(self.dtype(), other.dtype())?;
        self.field = Arc::new(Field::new(self.name().clone(), dtype));

        let len = self.len();

        self.length = self
            .length
            .checked_add(other.length)
            .ok_or_else(|| polars_err!(ComputeError: LENGTH_LIMIT_MSG))?;
        self.null_count += other.null_count;

        self.set_sorted_flag(IsSorted::Not);

        new_chunks_owned(&mut self.chunks, std::mem::take(&mut other.chunks), len);
        Ok(())
    }
}

#[cfg(feature = "object")]
#[doc(hidden)]
impl<T: PolarsObject> ObjectChunked<T> {
    pub fn append(&mut self, other: &Self) -> PolarsResult<()> {
        self.append_owned(other.clone())
    }

    pub fn append_owned(&mut self, mut other: Self) -> PolarsResult<()> {
        let len = self.len();
        self.length = self
            .length
            .checked_add(other.length)
            .ok_or_else(|| polars_err!(ComputeError: LENGTH_LIMIT_MSG))?;
        self.null_count += other.null_count;
        self.set_sorted_flag(IsSorted::Not);

        new_chunks_owned(&mut self.chunks, std::mem::take(&mut other.chunks), len);
        Ok(())
    }
}