polars_time/upsample.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
#[cfg(feature = "timezones")]
use polars_core::chunked_array::temporal::parse_time_zone;
use polars_core::prelude::*;
use polars_ops::prelude::*;
use polars_ops::series::SeriesMethods;
use crate::prelude::*;
pub trait PolarsUpsample {
/// Upsample a [`DataFrame`] at a regular frequency.
///
/// # Arguments
/// * `by` - First group by these columns and then upsample for every group
/// * `time_column` - Will be used to determine a date_range.
/// Note that this column has to be sorted for the output to make sense.
/// * `every` - interval will start 'every' duration
/// * `offset` - change the start of the date_range by this offset.
///
/// The `every` and `offset` arguments are created with
/// the following string language:
/// - 1ns (1 nanosecond)
/// - 1us (1 microsecond)
/// - 1ms (1 millisecond)
/// - 1s (1 second)
/// - 1m (1 minute)
/// - 1h (1 hour)
/// - 1d (1 calendar day)
/// - 1w (1 calendar week)
/// - 1mo (1 calendar month)
/// - 1q (1 calendar quarter)
/// - 1y (1 calendar year)
/// - 1i (1 index count)
///
/// Or combine them:
/// "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
///
/// By "calendar day", we mean the corresponding time on the next
/// day (which may not be 24 hours, depending on daylight savings).
/// Similarly for "calendar week", "calendar month", "calendar quarter",
/// and "calendar year".
fn upsample<I: IntoVec<PlSmallStr>>(
&self,
by: I,
time_column: &str,
every: Duration,
) -> PolarsResult<DataFrame>;
/// Upsample a [`DataFrame`] at a regular frequency.
///
/// Similar to [`upsample`][PolarsUpsample::upsample], but order of the
/// DataFrame is maintained when `by` is specified.
///
/// # Arguments
/// * `by` - First group by these columns and then upsample for every group
/// * `time_column` - Will be used to determine a date_range.
/// Note that this column has to be sorted for the output to make sense.
/// * `every` - interval will start 'every' duration
/// * `offset` - change the start of the date_range by this offset.
///
/// The `every` and `offset` arguments are created with
/// the following string language:
/// - 1ns (1 nanosecond)
/// - 1us (1 microsecond)
/// - 1ms (1 millisecond)
/// - 1s (1 second)
/// - 1m (1 minute)
/// - 1h (1 hour)
/// - 1d (1 calendar day)
/// - 1w (1 calendar week)
/// - 1mo (1 calendar month)
/// - 1q (1 calendar quarter)
/// - 1y (1 calendar year)
/// - 1i (1 index count)
///
/// Or combine them:
/// "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
///
/// By "calendar day", we mean the corresponding time on the next
/// day (which may not be 24 hours, depending on daylight savings).
/// Similarly for "calendar week", "calendar month", "calendar quarter",
/// and "calendar year".
fn upsample_stable<I: IntoVec<PlSmallStr>>(
&self,
by: I,
time_column: &str,
every: Duration,
) -> PolarsResult<DataFrame>;
}
impl PolarsUpsample for DataFrame {
fn upsample<I: IntoVec<PlSmallStr>>(
&self,
by: I,
time_column: &str,
every: Duration,
) -> PolarsResult<DataFrame> {
let by = by.into_vec();
let time_type = self.column(time_column)?.dtype();
ensure_duration_matches_dtype(every, time_type, "every")?;
upsample_impl(self, by, time_column, every, false)
}
fn upsample_stable<I: IntoVec<PlSmallStr>>(
&self,
by: I,
time_column: &str,
every: Duration,
) -> PolarsResult<DataFrame> {
let by = by.into_vec();
let time_type = self.column(time_column)?.dtype();
ensure_duration_matches_dtype(every, time_type, "every")?;
upsample_impl(self, by, time_column, every, true)
}
}
fn upsample_impl(
source: &DataFrame,
by: Vec<PlSmallStr>,
index_column: &str,
every: Duration,
stable: bool,
) -> PolarsResult<DataFrame> {
let s = source.column(index_column)?;
let time_type = s.dtype();
if matches!(time_type, DataType::Date) {
let mut df = source.clone();
df.apply(index_column, |s| {
s.cast(&DataType::Datetime(TimeUnit::Milliseconds, None))
.unwrap()
})
.unwrap();
let mut out = upsample_impl(&df, by, index_column, every, stable)?;
out.apply(index_column, |s| s.cast(time_type).unwrap())
.unwrap();
Ok(out)
} else if matches!(
time_type,
DataType::UInt32 | DataType::UInt64 | DataType::Int32
) {
let mut df = source.clone();
df.apply(index_column, |s| {
s.cast(&DataType::Int64)
.unwrap()
.cast(&DataType::Datetime(TimeUnit::Nanoseconds, None))
.unwrap()
})
.unwrap();
let mut out = upsample_impl(&df, by, index_column, every, stable)?;
out.apply(index_column, |s| s.cast(time_type).unwrap())
.unwrap();
Ok(out)
} else if matches!(time_type, DataType::Int64) {
let mut df = source.clone();
df.apply(index_column, |s| {
s.cast(&DataType::Datetime(TimeUnit::Nanoseconds, None))
.unwrap()
})
.unwrap();
let mut out = upsample_impl(&df, by, index_column, every, stable)?;
out.apply(index_column, |s| s.cast(time_type).unwrap())
.unwrap();
Ok(out)
} else if by.is_empty() {
let index_column = source.column(index_column)?;
upsample_single_impl(source, index_column.as_materialized_series(), every)
} else {
let gb = if stable {
source.group_by_stable(by)
} else {
source.group_by(by)
};
// don't parallelize this, this may SO on large data.
gb?.apply(|df| {
let index_column = df.column(index_column)?;
upsample_single_impl(&df, index_column.as_materialized_series(), every)
})
}
}
fn upsample_single_impl(
source: &DataFrame,
index_column: &Series,
every: Duration,
) -> PolarsResult<DataFrame> {
index_column.ensure_sorted_arg("upsample")?;
let index_col_name = index_column.name();
use DataType::*;
match index_column.dtype() {
Datetime(tu, tz) => {
let s = index_column.cast(&Int64).unwrap();
let ca = s.i64().unwrap();
let first = ca.iter().flatten().next();
let last = ca.iter().flatten().next_back();
match (first, last) {
(Some(first), Some(last)) => {
let tz = match tz {
#[cfg(feature = "timezones")]
Some(tz) => Some(parse_time_zone(tz)?),
_ => None,
};
let range = datetime_range_impl(
index_col_name.clone(),
first,
last,
every,
ClosedWindow::Both,
*tu,
tz.as_ref(),
)?
.into_series()
.into_frame();
range.join(
source,
[index_col_name.clone()],
[index_col_name.clone()],
JoinArgs::new(JoinType::Left),
)
},
_ => polars_bail!(
ComputeError: "cannot determine upsample boundaries: all elements are null"
),
}
},
dt => polars_bail!(
ComputeError: "upsample not allowed for index column of dtype {}", dt,
),
}
}