polars_core/frame/group_by/perfect.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
use std::fmt::Debug;
use std::mem::MaybeUninit;
use num_traits::{FromPrimitive, ToPrimitive};
use polars_utils::idx_vec::IdxVec;
use polars_utils::sync::SyncPtr;
use rayon::prelude::*;
#[cfg(all(feature = "dtype-categorical", feature = "performant"))]
use crate::config::verbose;
use crate::datatypes::*;
use crate::prelude::*;
use crate::POOL;
impl<T> ChunkedArray<T>
where
T: PolarsIntegerType,
T::Native: ToPrimitive + FromPrimitive + Debug,
{
/// Use the indexes as perfect groups.
///
/// # Safety
/// This ChunkedArray must contain each value in [0..num_groups) at least
/// once, and nothing outside this range.
pub unsafe fn group_tuples_perfect(
&self,
num_groups: usize,
mut multithreaded: bool,
group_capacity: usize,
) -> GroupsType {
multithreaded &= POOL.current_num_threads() > 1;
// The latest index will be used for the null sentinel.
let len = if self.null_count() > 0 {
// We add one to store the null sentinel group.
num_groups + 1
} else {
num_groups
};
let null_idx = len.saturating_sub(1);
let n_threads = POOL.current_num_threads();
let chunk_size = len / n_threads;
let (groups, first) = if multithreaded && chunk_size > 1 {
let mut groups: Vec<IdxVec> = Vec::new();
groups.resize_with(len, || IdxVec::with_capacity(group_capacity));
let mut first: Vec<IdxSize> = Vec::with_capacity(len);
// Round up offsets to nearest cache line for groups to reduce false sharing.
let groups_start = groups.as_ptr();
let mut per_thread_offsets = Vec::with_capacity(n_threads + 1);
per_thread_offsets.push(0);
for t in 0..n_threads {
let ideal_offset = (t + 1) * chunk_size;
let cache_aligned_offset =
ideal_offset + groups_start.wrapping_add(ideal_offset).align_offset(128);
if t == n_threads - 1 {
per_thread_offsets.push(len);
} else {
per_thread_offsets.push(std::cmp::min(cache_aligned_offset, len));
}
}
let groups_ptr = unsafe { SyncPtr::new(groups.as_mut_ptr()) };
let first_ptr = unsafe { SyncPtr::new(first.as_mut_ptr()) };
POOL.install(|| {
(0..n_threads).into_par_iter().for_each(|thread_no| {
// We use raw pointers because the slices would overlap.
// However, each thread has its own range it is responsible for.
let groups = groups_ptr.get();
let first = first_ptr.get();
let start = per_thread_offsets[thread_no];
let start = T::Native::from_usize(start).unwrap();
let end = per_thread_offsets[thread_no + 1];
let end = T::Native::from_usize(end).unwrap();
if start == end && thread_no != n_threads - 1 {
return;
};
let push_to_group = |cat, row_nr| unsafe {
debug_assert!(cat < len);
let buf = &mut *groups.add(cat);
buf.push(row_nr);
if buf.len() == 1 {
*first.add(cat) = row_nr;
}
};
let mut row_nr = 0 as IdxSize;
for arr in self.downcast_iter() {
if arr.null_count() == 0 {
for &cat in arr.values().as_slice() {
if cat >= start && cat < end {
push_to_group(cat.to_usize().unwrap(), row_nr);
}
row_nr += 1;
}
} else {
for opt_cat in arr.iter() {
if let Some(&cat) = opt_cat {
if cat >= start && cat < end {
push_to_group(cat.to_usize().unwrap(), row_nr);
}
} else if thread_no == n_threads - 1 {
// Last thread handles null values.
push_to_group(null_idx, row_nr);
}
row_nr += 1;
}
}
}
});
});
unsafe {
first.set_len(len);
}
(groups, first)
} else {
let mut groups = Vec::with_capacity(len);
let mut first = Vec::with_capacity(len);
let first_out = first.spare_capacity_mut();
groups.resize_with(len, || IdxVec::with_capacity(group_capacity));
let mut push_to_group = |cat, row_nr| unsafe {
let buf: &mut IdxVec = groups.get_unchecked_mut(cat);
buf.push(row_nr);
if buf.len() == 1 {
*first_out.get_unchecked_mut(cat) = MaybeUninit::new(row_nr);
}
};
let mut row_nr = 0 as IdxSize;
for arr in self.downcast_iter() {
for opt_cat in arr.iter() {
if let Some(cat) = opt_cat {
push_to_group(cat.to_usize().unwrap(), row_nr);
} else {
push_to_group(null_idx, row_nr);
}
row_nr += 1;
}
}
unsafe {
first.set_len(len);
}
(groups, first)
};
// NOTE! we set sorted here!
// this happens to be true for `fast_unique` categoricals
GroupsType::Idx(GroupsIdx::new(first, groups, true))
}
}
#[cfg(all(feature = "dtype-categorical", feature = "performant"))]
// Special implementation so that cats can be processed in a single pass
impl CategoricalChunked {
// Use the indexes as perfect groups
pub fn group_tuples_perfect(&self, multithreaded: bool, sorted: bool) -> GroupsType {
let rev_map = self.get_rev_map();
if self.is_empty() {
return GroupsType::Idx(GroupsIdx::new(vec![], vec![], true));
}
let cats = self.physical();
let mut out = match &**rev_map {
RevMapping::Local(cached, _) => {
if self._can_fast_unique() {
assert!(cached.len() <= self.len(), "invalid invariant");
if verbose() {
eprintln!("grouping categoricals, run perfect hash function");
}
// on relative small tables this isn't much faster than the default strategy
// but on huge tables, this can be > 2x faster
unsafe { cats.group_tuples_perfect(cached.len(), multithreaded, 0) }
} else {
self.physical().group_tuples(multithreaded, sorted).unwrap()
}
},
RevMapping::Global(_mapping, _cached, _) => {
// TODO! see if we can optimize this
// the problem is that the global categories are not guaranteed packed together
// so we might need to deref them first to local ones, but that might be more
// expensive than just hashing (benchmark first)
self.physical().group_tuples(multithreaded, sorted).unwrap()
},
};
if sorted {
out.sort()
}
out
}
}