polars_core/frame/group_by/hashing.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
use hashbrown::hash_map::Entry;
use polars_utils::hashing::{hash_to_partition, DirtyHash};
use polars_utils::idx_vec::IdxVec;
use polars_utils::itertools::Itertools;
use polars_utils::sync::SyncPtr;
use polars_utils::total_ord::{ToTotalOrd, TotalHash, TotalOrdWrap};
use polars_utils::unitvec;
use rayon::prelude::*;
use crate::hashing::*;
use crate::prelude::*;
use crate::utils::flatten;
use crate::POOL;
fn get_init_size() -> usize {
// we check if this is executed from the main thread
// we don't want to pre-allocate this much if executed
// group_tuples in a parallel iterator as that explodes allocation
if POOL.current_thread_index().is_none() {
_HASHMAP_INIT_SIZE
} else {
0
}
}
fn finish_group_order(mut out: Vec<Vec<IdxItem>>, sorted: bool) -> GroupsProxy {
if sorted {
// we can just take the first value, no need to flatten
let mut out = if out.len() == 1 {
out.pop().unwrap()
} else {
let (cap, offsets) = flatten::cap_and_offsets(&out);
// we write (first, all) tuple because of sorting
let mut items = Vec::with_capacity(cap);
let items_ptr = unsafe { SyncPtr::new(items.as_mut_ptr()) };
POOL.install(|| {
out.into_par_iter()
.zip(offsets)
.for_each(|(mut g, offset)| {
// pre-sort every array
// this will make the final single threaded sort much faster
g.sort_unstable_by_key(|g| g.0);
unsafe {
let mut items_ptr: *mut (IdxSize, IdxVec) = items_ptr.get();
items_ptr = items_ptr.add(offset);
for (i, g) in g.into_iter().enumerate() {
std::ptr::write(items_ptr.add(i), g)
}
}
});
});
unsafe {
items.set_len(cap);
}
items
};
out.sort_unstable_by_key(|g| g.0);
let mut idx = GroupsIdx::from_iter(out);
idx.sorted = true;
GroupsProxy::Idx(idx)
} else {
// we can just take the first value, no need to flatten
if out.len() == 1 {
GroupsProxy::Idx(GroupsIdx::from(out.pop().unwrap()))
} else {
// flattens
GroupsProxy::Idx(GroupsIdx::from(out))
}
}
}
pub(crate) fn group_by<K>(keys: impl Iterator<Item = K>, sorted: bool) -> GroupsProxy
where
K: TotalHash + TotalEq,
{
let init_size = get_init_size();
let (mut first, mut groups);
if sorted {
groups = Vec::with_capacity(get_init_size());
first = Vec::with_capacity(get_init_size());
let mut hash_tbl = PlHashMap::with_capacity(init_size);
for (idx, k) in keys.enumerate_idx() {
match hash_tbl.entry(TotalOrdWrap(k)) {
Entry::Vacant(entry) => {
let group_idx = groups.len() as IdxSize;
entry.insert(group_idx);
groups.push(unitvec![idx]);
first.push(idx);
},
Entry::Occupied(entry) => unsafe {
groups.get_unchecked_mut(*entry.get() as usize).push(idx)
},
}
}
} else {
let mut hash_tbl = PlHashMap::with_capacity(init_size);
for (idx, k) in keys.enumerate_idx() {
match hash_tbl.entry(TotalOrdWrap(k)) {
Entry::Vacant(entry) => {
entry.insert((idx, unitvec![idx]));
},
Entry::Occupied(mut entry) => entry.get_mut().1.push(idx),
}
}
(first, groups) = hash_tbl.into_values().unzip();
}
GroupsProxy::Idx(GroupsIdx::new(first, groups, sorted))
}
// giving the slice info to the compiler is much
// faster than the using an iterator, that's why we
// have the code duplication
pub(crate) fn group_by_threaded_slice<T, IntoSlice>(
keys: Vec<IntoSlice>,
n_partitions: usize,
sorted: bool,
) -> GroupsProxy
where
T: ToTotalOrd,
<T as ToTotalOrd>::TotalOrdItem: Send + Sync + Copy + DirtyHash,
IntoSlice: AsRef<[T]> + Send + Sync,
{
let init_size = get_init_size();
// We will create a hashtable in every thread.
// We use the hash to partition the keys to the matching hashtable.
// Every thread traverses all keys/hashes and ignores the ones that doesn't fall in that partition.
let out = POOL.install(|| {
(0..n_partitions)
.into_par_iter()
.map(|thread_no| {
let mut hash_tbl = PlHashMap::with_capacity(init_size);
let mut offset = 0;
for keys in &keys {
let keys = keys.as_ref();
let len = keys.len() as IdxSize;
for (key_idx, k) in keys.iter().enumerate_idx() {
let k = k.to_total_ord();
let idx = key_idx + offset;
if thread_no == hash_to_partition(k.dirty_hash(), n_partitions) {
match hash_tbl.entry(k) {
Entry::Vacant(entry) => {
entry.insert((idx, unitvec![idx]));
},
Entry::Occupied(mut entry) => {
entry.get_mut().1.push(idx);
},
}
}
}
offset += len;
}
hash_tbl
.into_iter()
.map(|(_k, v)| v)
.collect_trusted::<Vec<_>>()
})
.collect::<Vec<_>>()
});
finish_group_order(out, sorted)
}
pub(crate) fn group_by_threaded_iter<T, I>(
keys: &[I],
n_partitions: usize,
sorted: bool,
) -> GroupsProxy
where
I: IntoIterator<Item = T> + Send + Sync + Clone,
I::IntoIter: ExactSizeIterator,
T: ToTotalOrd,
<T as ToTotalOrd>::TotalOrdItem: Send + Sync + Copy + DirtyHash,
{
let init_size = get_init_size();
// We will create a hashtable in every thread.
// We use the hash to partition the keys to the matching hashtable.
// Every thread traverses all keys/hashes and ignores the ones that doesn't fall in that partition.
let out = POOL.install(|| {
(0..n_partitions)
.into_par_iter()
.map(|thread_no| {
let mut hash_tbl: PlHashMap<T::TotalOrdItem, IdxVec> =
PlHashMap::with_capacity(init_size);
let mut offset = 0;
for keys in keys {
let keys = keys.clone().into_iter();
let len = keys.len() as IdxSize;
for (key_idx, k) in keys.into_iter().enumerate_idx() {
let k = k.to_total_ord();
let idx = key_idx + offset;
if thread_no == hash_to_partition(k.dirty_hash(), n_partitions) {
match hash_tbl.entry(k) {
Entry::Vacant(entry) => {
entry.insert(unitvec![idx]);
},
Entry::Occupied(mut entry) => {
entry.get_mut().push(idx);
},
}
}
}
offset += len;
}
// iterating the hash tables locally
// was faster than iterating in the materialization phase directly
// the proper end vec. I believe this is because the hash-table
// currently is local to the thread so in hot cache
// So we first collect into a tight vec and then do a second
// materialization run
// this is also faster than the index-map approach where we
// directly locally store to a vec at the cost of an extra
// indirection
hash_tbl
.into_iter()
.map(|(_k, v)| (unsafe { *v.first().unwrap_unchecked() }, v))
.collect_trusted::<Vec<_>>()
})
.collect::<Vec<_>>()
});
finish_group_order(out, sorted)
}