polars_io/json/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
//! # (De)serialize JSON files.
//!
//! ## Read JSON to a DataFrame
//!
//! ## Example
//!
//! ```
//! use polars_core::prelude::*;
//! use polars_io::prelude::*;
//! use std::io::Cursor;
//! use std::num::NonZeroUsize;
//!
//! let basic_json = r#"{"a":1, "b":2.0, "c":false, "d":"4"}
//! {"a":-10, "b":-3.5, "c":true, "d":"4"}
//! {"a":2, "b":0.6, "c":false, "d":"text"}
//! {"a":1, "b":2.0, "c":false, "d":"4"}
//! {"a":7, "b":-3.5, "c":true, "d":"4"}
//! {"a":1, "b":0.6, "c":false, "d":"text"}
//! {"a":1, "b":2.0, "c":false, "d":"4"}
//! {"a":5, "b":-3.5, "c":true, "d":"4"}
//! {"a":1, "b":0.6, "c":false, "d":"text"}
//! {"a":1, "b":2.0, "c":false, "d":"4"}
//! {"a":1, "b":-3.5, "c":true, "d":"4"}
//! {"a":1, "b":0.6, "c":false, "d":"text"}"#;
//! let file = Cursor::new(basic_json);
//! let df = JsonReader::new(file)
//! .with_json_format(JsonFormat::JsonLines)
//! .infer_schema_len(NonZeroUsize::new(3))
//! .with_batch_size(NonZeroUsize::new(3).unwrap())
//! .finish()
//! .unwrap();
//!
//! println!("{:?}", df);
//! ```
//! >>> Outputs:
//!
//! ```text
//! +-----+--------+-------+--------+
//! | a | b | c | d |
//! | --- | --- | --- | --- |
//! | i64 | f64 | bool | str |
//! +=====+========+=======+========+
//! | 1 | 2 | false | "4" |
//! +-----+--------+-------+--------+
//! | -10 | -3.5e0 | true | "4" |
//! +-----+--------+-------+--------+
//! | 2 | 0.6 | false | "text" |
//! +-----+--------+-------+--------+
//! | 1 | 2 | false | "4" |
//! +-----+--------+-------+--------+
//! | 7 | -3.5e0 | true | "4" |
//! +-----+--------+-------+--------+
//! | 1 | 0.6 | false | "text" |
//! +-----+--------+-------+--------+
//! | 1 | 2 | false | "4" |
//! +-----+--------+-------+--------+
//! | 5 | -3.5e0 | true | "4" |
//! +-----+--------+-------+--------+
//! | 1 | 0.6 | false | "text" |
//! +-----+--------+-------+--------+
//! | 1 | 2 | false | "4" |
//! +-----+--------+-------+--------+
//! ```
//!
pub(crate) mod infer;
use std::io::Write;
use std::num::NonZeroUsize;
use std::ops::Deref;
use arrow::legacy::conversion::chunk_to_struct;
use polars_core::error::to_compute_err;
use polars_core::prelude::*;
use polars_error::{polars_bail, PolarsResult};
use polars_json::json::write::FallibleStreamingIterator;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use simd_json::BorrowedValue;
use crate::mmap::{MmapBytesReader, ReaderBytes};
use crate::prelude::*;
#[derive(Copy, Clone, Debug, PartialEq, Eq, Default, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct JsonWriterOptions {
/// maintain the order the data was processed
pub maintain_order: bool,
}
/// The format to use to write the DataFrame to JSON: `Json` (a JSON array)
/// or `JsonLines` (each row output on a separate line).
///
/// In either case, each row is serialized as a JSON object whose keys are the column names and
/// whose values are the row's corresponding values.
pub enum JsonFormat {
/// A single JSON array containing each DataFrame row as an object. The length of the array is the number of rows in
/// the DataFrame.
///
/// Use this to create valid JSON that can be deserialized back into an array in one fell swoop.
Json,
/// Each DataFrame row is serialized as a JSON object on a separate line. The number of lines in the output is the
/// number of rows in the DataFrame.
///
/// The [JSON Lines](https://jsonlines.org) format makes it easy to read records in a streaming fashion, one (line)
/// at a time. But the output in its entirety is not valid JSON; only the individual lines are.
///
/// It is recommended to use the file extension `.jsonl` when saving as JSON Lines.
JsonLines,
}
/// Writes a DataFrame to JSON.
///
/// Under the hood, this uses [`arrow2::io::json`](https://docs.rs/arrow2/latest/arrow2/io/json/write/fn.write.html).
/// `arrow2` generally serializes types that are not JSON primitives, such as Date and DateTime, as their
/// `Display`-formatted versions. For instance, a (naive) DateTime column is formatted as the String `"yyyy-mm-dd
/// HH:MM:SS"`. To control how non-primitive columns are serialized, convert them to String or another primitive type
/// before serializing.
#[must_use]
pub struct JsonWriter<W: Write> {
/// File or Stream handler
buffer: W,
json_format: JsonFormat,
}
impl<W: Write> JsonWriter<W> {
pub fn with_json_format(mut self, format: JsonFormat) -> Self {
self.json_format = format;
self
}
}
impl<W> SerWriter<W> for JsonWriter<W>
where
W: Write,
{
/// Create a new `JsonWriter` writing to `buffer` with format `JsonFormat::JsonLines`. To specify a different
/// format, use e.g., [`JsonWriter::new(buffer).with_json_format(JsonFormat::Json)`](JsonWriter::with_json_format).
fn new(buffer: W) -> Self {
JsonWriter {
buffer,
json_format: JsonFormat::JsonLines,
}
}
fn finish(&mut self, df: &mut DataFrame) -> PolarsResult<()> {
df.align_chunks_par();
let fields = df
.iter()
.map(|s| {
#[cfg(feature = "object")]
polars_ensure!(!matches!(s.dtype(), DataType::Object(_, _)), ComputeError: "cannot write 'Object' datatype to json");
Ok(s.field().to_arrow(CompatLevel::newest()))
})
.collect::<PolarsResult<Vec<_>>>()?;
let batches = df
.iter_chunks(CompatLevel::newest(), false)
.map(|chunk| Ok(Box::new(chunk_to_struct(chunk, fields.clone())) as ArrayRef));
match self.json_format {
JsonFormat::JsonLines => {
let serializer = polars_json::ndjson::write::Serializer::new(batches, vec![]);
let writer =
polars_json::ndjson::write::FileWriter::new(&mut self.buffer, serializer);
writer.collect::<PolarsResult<()>>()?;
},
JsonFormat::Json => {
let serializer = polars_json::json::write::Serializer::new(batches, vec![]);
polars_json::json::write::write(&mut self.buffer, serializer)?;
},
}
Ok(())
}
}
pub struct BatchedWriter<W: Write> {
writer: W,
}
impl<W> BatchedWriter<W>
where
W: Write,
{
pub fn new(writer: W) -> Self {
BatchedWriter { writer }
}
/// Write a batch to the json writer.
///
/// # Panics
/// The caller must ensure the chunks in the given [`DataFrame`] are aligned.
pub fn write_batch(&mut self, df: &DataFrame) -> PolarsResult<()> {
let fields = df
.iter()
.map(|s| {
#[cfg(feature = "object")]
polars_ensure!(!matches!(s.dtype(), DataType::Object(_, _)), ComputeError: "cannot write 'Object' datatype to json");
Ok(s.field().to_arrow(CompatLevel::newest()))
})
.collect::<PolarsResult<Vec<_>>>()?;
let chunks = df.iter_chunks(CompatLevel::newest(), false);
let batches =
chunks.map(|chunk| Ok(Box::new(chunk_to_struct(chunk, fields.clone())) as ArrayRef));
let mut serializer = polars_json::ndjson::write::Serializer::new(batches, vec![]);
while let Some(block) = serializer.next()? {
self.writer.write_all(block)?;
}
Ok(())
}
}
/// Reads JSON in one of the formats in [`JsonFormat`] into a DataFrame.
#[must_use]
pub struct JsonReader<'a, R>
where
R: MmapBytesReader,
{
reader: R,
rechunk: bool,
ignore_errors: bool,
infer_schema_len: Option<NonZeroUsize>,
batch_size: NonZeroUsize,
projection: Option<Vec<PlSmallStr>>,
schema: Option<SchemaRef>,
schema_overwrite: Option<&'a Schema>,
json_format: JsonFormat,
}
pub fn remove_bom(bytes: &[u8]) -> PolarsResult<&[u8]> {
if bytes.starts_with(&[0xEF, 0xBB, 0xBF]) {
// UTF-8 BOM
Ok(&bytes[3..])
} else if bytes.starts_with(&[0xFE, 0xFF]) || bytes.starts_with(&[0xFF, 0xFE]) {
// UTF-16 BOM
polars_bail!(ComputeError: "utf-16 not supported")
} else {
Ok(bytes)
}
}
impl<R> SerReader<R> for JsonReader<'_, R>
where
R: MmapBytesReader,
{
fn new(reader: R) -> Self {
JsonReader {
reader,
rechunk: true,
ignore_errors: false,
infer_schema_len: Some(NonZeroUsize::new(100).unwrap()),
batch_size: NonZeroUsize::new(8192).unwrap(),
projection: None,
schema: None,
schema_overwrite: None,
json_format: JsonFormat::Json,
}
}
fn set_rechunk(mut self, rechunk: bool) -> Self {
self.rechunk = rechunk;
self
}
/// Take the SerReader and return a parsed DataFrame.
///
/// Because JSON values specify their types (number, string, etc), no upcasting or conversion is performed between
/// incompatible types in the input. In the event that a column contains mixed dtypes, is it unspecified whether an
/// error is returned or whether elements of incompatible dtypes are replaced with `null`.
fn finish(mut self) -> PolarsResult<DataFrame> {
let pre_rb: ReaderBytes = (&mut self.reader).into();
let bytes = remove_bom(pre_rb.deref())?;
let rb = ReaderBytes::Borrowed(bytes);
let out = match self.json_format {
JsonFormat::Json => {
polars_ensure!(!self.ignore_errors, InvalidOperation: "'ignore_errors' only supported in ndjson");
let mut bytes = rb.deref().to_vec();
let owned = &mut vec![];
compression::maybe_decompress_bytes(&bytes, owned)?;
// the easiest way to avoid ownership issues is by implicitly figuring out if
// decompression happened (owned is only populated on decompress), then pick which bytes to parse
let json_value = if owned.is_empty() {
simd_json::to_borrowed_value(&mut bytes).map_err(to_compute_err)?
} else {
simd_json::to_borrowed_value(owned).map_err(to_compute_err)?
};
if let BorrowedValue::Array(array) = &json_value {
if array.is_empty() & self.schema.is_none() & self.schema_overwrite.is_none() {
return Ok(DataFrame::empty());
}
}
let allow_extra_fields_in_struct = self.schema.is_some();
// struct type
let dtype = if let Some(mut schema) = self.schema {
if let Some(overwrite) = self.schema_overwrite {
let mut_schema = Arc::make_mut(&mut schema);
overwrite_schema(mut_schema, overwrite)?;
}
DataType::Struct(schema.iter_fields().collect()).to_arrow(CompatLevel::newest())
} else {
// infer
let inner_dtype = if let BorrowedValue::Array(values) = &json_value {
infer::json_values_to_supertype(
values,
self.infer_schema_len
.unwrap_or(NonZeroUsize::new(usize::MAX).unwrap()),
)?
.to_arrow(CompatLevel::newest())
} else {
polars_json::json::infer(&json_value)?
};
if let Some(overwrite) = self.schema_overwrite {
let ArrowDataType::Struct(fields) = inner_dtype else {
polars_bail!(ComputeError: "can only deserialize json objects")
};
let mut schema = Schema::from_iter(fields.iter().map(Into::<Field>::into));
overwrite_schema(&mut schema, overwrite)?;
DataType::Struct(
schema
.into_iter()
.map(|(name, dt)| Field::new(name, dt))
.collect(),
)
.to_arrow(CompatLevel::newest())
} else {
inner_dtype
}
};
let dtype = if let BorrowedValue::Array(_) = &json_value {
ArrowDataType::LargeList(Box::new(arrow::datatypes::Field::new(
PlSmallStr::from_static("item"),
dtype,
true,
)))
} else {
dtype
};
let arr = polars_json::json::deserialize(
&json_value,
dtype,
allow_extra_fields_in_struct,
)?;
let arr = arr.as_any().downcast_ref::<StructArray>().ok_or_else(
|| polars_err!(ComputeError: "can only deserialize json objects"),
)?;
DataFrame::try_from(arr.clone())
},
JsonFormat::JsonLines => {
let mut json_reader = CoreJsonReader::new(
rb,
None,
self.schema,
self.schema_overwrite,
None,
1024, // sample size
NonZeroUsize::new(1 << 18).unwrap(),
false,
self.infer_schema_len,
self.ignore_errors,
None,
None,
None,
)?;
let mut df: DataFrame = json_reader.as_df()?;
if self.rechunk {
df.as_single_chunk_par();
}
Ok(df)
},
}?;
// TODO! Ensure we don't materialize the columns we don't need
if let Some(proj) = self.projection.as_deref() {
out.select(proj.iter().cloned())
} else {
Ok(out)
}
}
}
impl<'a, R> JsonReader<'a, R>
where
R: MmapBytesReader,
{
/// Set the JSON file's schema
pub fn with_schema(mut self, schema: SchemaRef) -> Self {
self.schema = Some(schema);
self
}
/// Overwrite parts of the inferred schema.
pub fn with_schema_overwrite(mut self, schema: &'a Schema) -> Self {
self.schema_overwrite = Some(schema);
self
}
/// Set the JSON reader to infer the schema of the file. Currently, this is only used when reading from
/// [`JsonFormat::JsonLines`], as [`JsonFormat::Json`] reads in the entire array anyway.
///
/// When using [`JsonFormat::JsonLines`], `max_records = None` will read the entire buffer in order to infer the
/// schema, `Some(1)` would look only at the first record, `Some(2)` the first two records, etc.
///
/// It is an error to pass `max_records = Some(0)`, as a schema cannot be inferred from 0 records when deserializing
/// from JSON (unlike CSVs, there is no header row to inspect for column names).
pub fn infer_schema_len(mut self, max_records: Option<NonZeroUsize>) -> Self {
self.infer_schema_len = max_records;
self
}
/// Set the batch size (number of records to load at one time)
///
/// This heavily influences loading time.
pub fn with_batch_size(mut self, batch_size: NonZeroUsize) -> Self {
self.batch_size = batch_size;
self
}
/// Set the reader's column projection: the names of the columns to keep after deserialization. If `None`, all
/// columns are kept.
///
/// Setting `projection` to the columns you want to keep is more efficient than deserializing all of the columns and
/// then dropping the ones you don't want.
pub fn with_projection(mut self, projection: Option<Vec<PlSmallStr>>) -> Self {
self.projection = projection;
self
}
pub fn with_json_format(mut self, format: JsonFormat) -> Self {
self.json_format = format;
self
}
/// Return a `null` if an error occurs during parsing.
pub fn with_ignore_errors(mut self, ignore: bool) -> Self {
self.ignore_errors = ignore;
self
}
}