mod quantile;
mod var;
use std::ops::Add;
use arrow::compute;
use arrow::types::simd::Simd;
use arrow::types::NativeType;
use num_traits::{Float, One, ToPrimitive, Zero};
use polars_compute::float_sum;
use polars_compute::min_max::MinMaxKernel;
use polars_utils::min_max::MinMax;
use polars_utils::sync::SyncPtr;
pub use quantile::*;
pub use var::*;
use super::float_sorted_arg_max::{
float_arg_max_sorted_ascending, float_arg_max_sorted_descending,
};
use crate::chunked_array::ChunkedArray;
use crate::datatypes::{BooleanChunked, PolarsNumericType};
use crate::prelude::*;
use crate::series::IsSorted;
pub trait ChunkAggSeries {
fn sum_reduce(&self) -> Scalar {
unimplemented!()
}
fn max_reduce(&self) -> Scalar {
unimplemented!()
}
fn min_reduce(&self) -> Scalar {
unimplemented!()
}
fn prod_reduce(&self) -> Scalar {
unimplemented!()
}
}
fn sum<T>(array: &PrimitiveArray<T>) -> T
where
T: NumericNative + NativeType,
<T as Simd>::Simd: Add<Output = <T as Simd>::Simd> + compute::aggregate::Sum<T>,
{
if array.null_count() == array.len() {
return T::default();
}
if T::is_float() {
unsafe {
if T::is_f32() {
let f32_arr =
std::mem::transmute::<&PrimitiveArray<T>, &PrimitiveArray<f32>>(array);
let sum = float_sum::sum_arr_as_f32(f32_arr);
std::mem::transmute_copy::<f32, T>(&sum)
} else if T::is_f64() {
let f64_arr =
std::mem::transmute::<&PrimitiveArray<T>, &PrimitiveArray<f64>>(array);
let sum = float_sum::sum_arr_as_f64(f64_arr);
std::mem::transmute_copy::<f64, T>(&sum)
} else {
unreachable!("only supported float types are f32 and f64");
}
}
} else {
compute::aggregate::sum_primitive(array).unwrap_or(T::zero())
}
}
impl<T> ChunkAgg<T::Native> for ChunkedArray<T>
where
T: PolarsNumericType,
PrimitiveArray<T::Native>: for<'a> MinMaxKernel<Scalar<'a> = T::Native>,
<T::Native as Simd>::Simd:
Add<Output = <T::Native as Simd>::Simd> + compute::aggregate::Sum<T::Native>,
{
fn sum(&self) -> Option<T::Native> {
Some(
self.downcast_iter()
.map(sum)
.fold(T::Native::zero(), |acc, v| acc + v),
)
}
fn _sum_as_f64(&self) -> f64 {
self.downcast_iter().map(float_sum::sum_arr_as_f64).sum()
}
fn min(&self) -> Option<T::Native> {
if self.null_count() == self.len() {
return None;
}
let result = match self.is_sorted_flag() {
IsSorted::Ascending => {
let idx = self.first_non_null().unwrap();
unsafe { self.get_unchecked(idx) }
},
IsSorted::Descending => {
let idx = self.last_non_null().unwrap();
unsafe { self.get_unchecked(idx) }
},
IsSorted::Not => self
.downcast_iter()
.filter_map(MinMaxKernel::min_ignore_nan_kernel)
.reduce(MinMax::min_ignore_nan),
};
result
}
fn max(&self) -> Option<T::Native> {
if self.null_count() == self.len() {
return None;
}
let result = match self.is_sorted_flag() {
IsSorted::Ascending => {
let idx = if T::get_dtype().is_float() {
float_arg_max_sorted_ascending(self)
} else {
self.last_non_null().unwrap()
};
unsafe { self.get_unchecked(idx) }
},
IsSorted::Descending => {
let idx = if T::get_dtype().is_float() {
float_arg_max_sorted_descending(self)
} else {
self.first_non_null().unwrap()
};
unsafe { self.get_unchecked(idx) }
},
IsSorted::Not => self
.downcast_iter()
.filter_map(MinMaxKernel::max_ignore_nan_kernel)
.reduce(MinMax::max_ignore_nan),
};
result
}
fn min_max(&self) -> Option<(T::Native, T::Native)> {
if self.null_count() == self.len() {
return None;
}
let result = match self.is_sorted_flag() {
IsSorted::Ascending => {
let min = unsafe { self.get_unchecked(self.first_non_null().unwrap()) };
let max = {
let idx = if T::get_dtype().is_float() {
float_arg_max_sorted_ascending(self)
} else {
self.last_non_null().unwrap()
};
unsafe { self.get_unchecked(idx) }
};
min.zip(max)
},
IsSorted::Descending => {
let min = unsafe { self.get_unchecked(self.last_non_null().unwrap()) };
let max = {
let idx = if T::get_dtype().is_float() {
float_arg_max_sorted_descending(self)
} else {
self.first_non_null().unwrap()
};
unsafe { self.get_unchecked(idx) }
};
min.zip(max)
},
IsSorted::Not => self
.downcast_iter()
.filter_map(MinMaxKernel::min_max_ignore_nan_kernel)
.reduce(|(min1, max1), (min2, max2)| {
(
MinMax::min_ignore_nan(min1, min2),
MinMax::max_ignore_nan(max1, max2),
)
}),
};
result
}
fn mean(&self) -> Option<f64> {
let count = self.len() - self.null_count();
if count == 0 {
return None;
}
Some(self._sum_as_f64() / count as f64)
}
}
impl BooleanChunked {
pub fn sum(&self) -> Option<IdxSize> {
Some(if self.is_empty() {
0
} else {
self.downcast_iter()
.map(|arr| match arr.validity() {
Some(validity) => {
(arr.len() - (validity & arr.values()).unset_bits()) as IdxSize
},
None => (arr.len() - arr.values().unset_bits()) as IdxSize,
})
.sum()
})
}
pub fn min(&self) -> Option<bool> {
let nc = self.null_count();
let len = self.len();
if self.is_empty() || nc == len {
return None;
}
if nc == 0 {
if self.all() {
Some(true)
} else {
Some(false)
}
} else {
if (self.sum().unwrap() + nc as IdxSize) == len as IdxSize {
Some(true)
} else {
Some(false)
}
}
}
pub fn max(&self) -> Option<bool> {
if self.is_empty() || self.null_count() == self.len() {
return None;
}
if self.any() {
Some(true)
} else {
Some(false)
}
}
pub fn mean(&self) -> Option<f64> {
if self.is_empty() || self.null_count() == self.len() {
return None;
}
self.sum()
.map(|sum| sum as f64 / (self.len() - self.null_count()) as f64)
}
}
impl<T> ChunkAggSeries for ChunkedArray<T>
where
T: PolarsNumericType,
PrimitiveArray<T::Native>: for<'a> MinMaxKernel<Scalar<'a> = T::Native>,
<T::Native as Simd>::Simd:
Add<Output = <T::Native as Simd>::Simd> + compute::aggregate::Sum<T::Native>,
ChunkedArray<T>: IntoSeries,
{
fn sum_reduce(&self) -> Scalar {
let v: Option<T::Native> = self.sum();
Scalar::new(T::get_dtype(), v.into())
}
fn max_reduce(&self) -> Scalar {
let v = ChunkAgg::max(self);
Scalar::new(T::get_dtype(), v.into())
}
fn min_reduce(&self) -> Scalar {
let v = ChunkAgg::min(self);
Scalar::new(T::get_dtype(), v.into())
}
fn prod_reduce(&self) -> Scalar {
let mut prod = T::Native::one();
for arr in self.downcast_iter() {
for v in arr.into_iter().flatten() {
prod = prod * *v
}
}
Scalar::new(T::get_dtype(), prod.into())
}
}
impl<T> VarAggSeries for ChunkedArray<T>
where
T: PolarsIntegerType,
ChunkedArray<T>: ChunkVar,
{
fn var_reduce(&self, ddof: u8) -> Scalar {
let v = self.var(ddof);
Scalar::new(DataType::Float64, v.into())
}
fn std_reduce(&self, ddof: u8) -> Scalar {
let v = self.std(ddof);
Scalar::new(DataType::Float64, v.into())
}
}
impl VarAggSeries for Float32Chunked {
fn var_reduce(&self, ddof: u8) -> Scalar {
let v = self.var(ddof).map(|v| v as f32);
Scalar::new(DataType::Float32, v.into())
}
fn std_reduce(&self, ddof: u8) -> Scalar {
let v = self.std(ddof).map(|v| v as f32);
Scalar::new(DataType::Float32, v.into())
}
}
impl VarAggSeries for Float64Chunked {
fn var_reduce(&self, ddof: u8) -> Scalar {
let v = self.var(ddof);
Scalar::new(DataType::Float64, v.into())
}
fn std_reduce(&self, ddof: u8) -> Scalar {
let v = self.std(ddof);
Scalar::new(DataType::Float64, v.into())
}
}
impl<T> QuantileAggSeries for ChunkedArray<T>
where
T: PolarsIntegerType,
T::Native: Ord,
<T::Native as Simd>::Simd:
Add<Output = <T::Native as Simd>::Simd> + compute::aggregate::Sum<T::Native>,
{
fn quantile_reduce(&self, quantile: f64, method: QuantileMethod) -> PolarsResult<Scalar> {
let v = self.quantile(quantile, method)?;
Ok(Scalar::new(DataType::Float64, v.into()))
}
fn median_reduce(&self) -> Scalar {
let v = self.median();
Scalar::new(DataType::Float64, v.into())
}
}
impl QuantileAggSeries for Float32Chunked {
fn quantile_reduce(&self, quantile: f64, method: QuantileMethod) -> PolarsResult<Scalar> {
let v = self.quantile(quantile, method)?;
Ok(Scalar::new(DataType::Float32, v.into()))
}
fn median_reduce(&self) -> Scalar {
let v = self.median();
Scalar::new(DataType::Float32, v.into())
}
}
impl QuantileAggSeries for Float64Chunked {
fn quantile_reduce(&self, quantile: f64, method: QuantileMethod) -> PolarsResult<Scalar> {
let v = self.quantile(quantile, method)?;
Ok(Scalar::new(DataType::Float64, v.into()))
}
fn median_reduce(&self) -> Scalar {
let v = self.median();
Scalar::new(DataType::Float64, v.into())
}
}
impl ChunkAggSeries for BooleanChunked {
fn sum_reduce(&self) -> Scalar {
let v = self.sum();
Scalar::new(IDX_DTYPE, v.into())
}
fn max_reduce(&self) -> Scalar {
let v = self.max();
Scalar::new(DataType::Boolean, v.into())
}
fn min_reduce(&self) -> Scalar {
let v = self.min();
Scalar::new(DataType::Boolean, v.into())
}
}
impl StringChunked {
pub(crate) fn max_str(&self) -> Option<&str> {
if self.is_empty() {
return None;
}
match self.is_sorted_flag() {
IsSorted::Ascending => {
self.last_non_null().and_then(|idx| {
unsafe { self.get_unchecked(idx) }
})
},
IsSorted::Descending => {
self.first_non_null().and_then(|idx| {
unsafe { self.get_unchecked(idx) }
})
},
IsSorted::Not => self
.downcast_iter()
.filter_map(MinMaxKernel::max_ignore_nan_kernel)
.reduce(MinMax::max_ignore_nan),
}
}
pub(crate) fn min_str(&self) -> Option<&str> {
if self.is_empty() {
return None;
}
match self.is_sorted_flag() {
IsSorted::Ascending => {
self.first_non_null().and_then(|idx| {
unsafe { self.get_unchecked(idx) }
})
},
IsSorted::Descending => {
self.last_non_null().and_then(|idx| {
unsafe { self.get_unchecked(idx) }
})
},
IsSorted::Not => self
.downcast_iter()
.filter_map(MinMaxKernel::min_ignore_nan_kernel)
.reduce(MinMax::min_ignore_nan),
}
}
}
impl ChunkAggSeries for StringChunked {
fn max_reduce(&self) -> Scalar {
let av: AnyValue = self.max_str().into();
Scalar::new(DataType::String, av.into_static())
}
fn min_reduce(&self) -> Scalar {
let av: AnyValue = self.min_str().into();
Scalar::new(DataType::String, av.into_static())
}
}
#[cfg(feature = "dtype-categorical")]
impl CategoricalChunked {
fn min_categorical(&self) -> Option<&str> {
if self.is_empty() || self.null_count() == self.len() {
return None;
}
if self.uses_lexical_ordering() {
if self._can_fast_unique() {
self.get_rev_map().get_categories().min_ignore_nan_kernel()
} else {
let rev_map = self.get_rev_map();
self.physical()
.iter()
.flat_map(|opt_el: Option<u32>| {
opt_el.map(|el| unsafe { rev_map.get_unchecked(el) })
})
.min()
}
} else {
self.physical()
.min()
.map(|el| unsafe { self.get_rev_map().get_unchecked(el) })
}
}
fn max_categorical(&self) -> Option<&str> {
if self.is_empty() || self.null_count() == self.len() {
return None;
}
if self.uses_lexical_ordering() {
if self._can_fast_unique() {
self.get_rev_map().get_categories().max_ignore_nan_kernel()
} else {
let rev_map = self.get_rev_map();
self.physical()
.iter()
.flat_map(|opt_el: Option<u32>| {
opt_el.map(|el| unsafe { rev_map.get_unchecked(el) })
})
.max()
}
} else {
self.physical()
.max()
.map(|el| unsafe { self.get_rev_map().get_unchecked(el) })
}
}
}
#[cfg(feature = "dtype-categorical")]
impl ChunkAggSeries for CategoricalChunked {
fn min_reduce(&self) -> Scalar {
match self.dtype() {
DataType::Enum(r, _) => match self.physical().min() {
None => Scalar::new(self.dtype().clone(), AnyValue::Null),
Some(v) => {
let RevMapping::Local(arr, _) = &**r.as_ref().unwrap() else {
unreachable!()
};
Scalar::new(
self.dtype().clone(),
AnyValue::EnumOwned(
v,
r.as_ref().unwrap().clone(),
SyncPtr::from_const(arr as *const _),
),
)
},
},
DataType::Categorical(_, _) => {
let av: AnyValue = self.min_categorical().into();
Scalar::new(DataType::String, av.into_static())
},
_ => unreachable!(),
}
}
fn max_reduce(&self) -> Scalar {
match self.dtype() {
DataType::Enum(r, _) => match self.physical().max() {
None => Scalar::new(self.dtype().clone(), AnyValue::Null),
Some(v) => {
let RevMapping::Local(arr, _) = &**r.as_ref().unwrap() else {
unreachable!()
};
Scalar::new(
self.dtype().clone(),
AnyValue::EnumOwned(
v,
r.as_ref().unwrap().clone(),
SyncPtr::from_const(arr as *const _),
),
)
},
},
DataType::Categorical(_, _) => {
let av: AnyValue = self.max_categorical().into();
Scalar::new(DataType::String, av.into_static())
},
_ => unreachable!(),
}
}
}
impl BinaryChunked {
pub fn max_binary(&self) -> Option<&[u8]> {
if self.is_empty() {
return None;
}
match self.is_sorted_flag() {
IsSorted::Ascending => {
self.last_non_null().and_then(|idx| {
unsafe { self.get_unchecked(idx) }
})
},
IsSorted::Descending => {
self.first_non_null().and_then(|idx| {
unsafe { self.get_unchecked(idx) }
})
},
IsSorted::Not => self
.downcast_iter()
.filter_map(MinMaxKernel::max_ignore_nan_kernel)
.reduce(MinMax::max_ignore_nan),
}
}
pub fn min_binary(&self) -> Option<&[u8]> {
if self.is_empty() {
return None;
}
match self.is_sorted_flag() {
IsSorted::Ascending => {
self.first_non_null().and_then(|idx| {
unsafe { self.get_unchecked(idx) }
})
},
IsSorted::Descending => {
self.last_non_null().and_then(|idx| {
unsafe { self.get_unchecked(idx) }
})
},
IsSorted::Not => self
.downcast_iter()
.filter_map(MinMaxKernel::min_ignore_nan_kernel)
.reduce(MinMax::min_ignore_nan),
}
}
}
impl ChunkAggSeries for BinaryChunked {
fn sum_reduce(&self) -> Scalar {
unimplemented!()
}
fn max_reduce(&self) -> Scalar {
let av: AnyValue = self.max_binary().into();
Scalar::new(self.dtype().clone(), av.into_static())
}
fn min_reduce(&self) -> Scalar {
let av: AnyValue = self.min_binary().into();
Scalar::new(self.dtype().clone(), av.into_static())
}
}
#[cfg(feature = "object")]
impl<T: PolarsObject> ChunkAggSeries for ObjectChunked<T> {}
#[cfg(test)]
mod test {
use crate::prelude::*;
#[test]
fn test_var() {
let ca1 = Int32Chunked::new(PlSmallStr::EMPTY, &[5, 8, 9, 5, 0]);
let ca2 = Int32Chunked::new(
PlSmallStr::EMPTY,
&[
Some(5),
None,
Some(8),
Some(9),
None,
Some(5),
Some(0),
None,
],
);
for ca in &[ca1, ca2] {
let out = ca.var(1);
assert_eq!(out, Some(12.3));
let out = ca.std(1).unwrap();
assert!((3.5071355833500366 - out).abs() < 0.000000001);
}
}
#[test]
fn test_agg_float() {
let ca1 = Float32Chunked::new(PlSmallStr::from_static("a"), &[1.0, f32::NAN]);
let ca2 = Float32Chunked::new(PlSmallStr::from_static("b"), &[f32::NAN, 1.0]);
assert_eq!(ca1.min(), ca2.min());
let ca1 = Float64Chunked::new(PlSmallStr::from_static("a"), &[1.0, f64::NAN]);
let ca2 = Float64Chunked::from_slice(PlSmallStr::from_static("b"), &[f64::NAN, 1.0]);
assert_eq!(ca1.min(), ca2.min());
println!("{:?}", (ca1.min(), ca2.min()))
}
#[test]
fn test_median() {
let ca = UInt32Chunked::new(
PlSmallStr::from_static("a"),
&[Some(2), Some(1), None, Some(3), Some(5), None, Some(4)],
);
assert_eq!(ca.median(), Some(3.0));
let ca = UInt32Chunked::new(
PlSmallStr::from_static("a"),
&[
None,
Some(7),
Some(6),
Some(2),
Some(1),
None,
Some(3),
Some(5),
None,
Some(4),
],
);
assert_eq!(ca.median(), Some(4.0));
let ca = Float32Chunked::from_slice(
PlSmallStr::EMPTY,
&[
0.166189, 0.166559, 0.168517, 0.169393, 0.175272, 0.233167, 0.238787, 0.266562,
0.26903, 0.285792, 0.292801, 0.293429, 0.301706, 0.308534, 0.331489, 0.346095,
0.367644, 0.369939, 0.372074, 0.41014, 0.415789, 0.421781, 0.427725, 0.465363,
0.500208, 2.621727, 2.803311, 3.868526,
],
);
assert!((ca.median().unwrap() - 0.3200115).abs() < 0.0001)
}
#[test]
fn test_mean() {
let ca = Float32Chunked::new(PlSmallStr::EMPTY, &[Some(1.0), Some(2.0), None]);
assert_eq!(ca.mean().unwrap(), 1.5);
assert_eq!(
ca.into_series()
.mean_reduce()
.value()
.extract::<f32>()
.unwrap(),
1.5
);
let ca = Float32Chunked::full_null(PlSmallStr::EMPTY, 3);
assert_eq!(ca.mean(), None);
assert_eq!(
ca.into_series().mean_reduce().value().extract::<f32>(),
None
);
}
#[test]
fn test_quantile_all_null() {
let test_f32 = Float32Chunked::from_slice_options(PlSmallStr::EMPTY, &[None, None, None]);
let test_i32 = Int32Chunked::from_slice_options(PlSmallStr::EMPTY, &[None, None, None]);
let test_f64 = Float64Chunked::from_slice_options(PlSmallStr::EMPTY, &[None, None, None]);
let test_i64 = Int64Chunked::from_slice_options(PlSmallStr::EMPTY, &[None, None, None]);
let methods = vec![
QuantileMethod::Nearest,
QuantileMethod::Lower,
QuantileMethod::Higher,
QuantileMethod::Midpoint,
QuantileMethod::Linear,
QuantileMethod::Equiprobable,
];
for method in methods {
assert_eq!(test_f32.quantile(0.9, method).unwrap(), None);
assert_eq!(test_i32.quantile(0.9, method).unwrap(), None);
assert_eq!(test_f64.quantile(0.9, method).unwrap(), None);
assert_eq!(test_i64.quantile(0.9, method).unwrap(), None);
}
}
#[test]
fn test_quantile_single_value() {
let test_f32 = Float32Chunked::from_slice_options(PlSmallStr::EMPTY, &[Some(1.0)]);
let test_i32 = Int32Chunked::from_slice_options(PlSmallStr::EMPTY, &[Some(1)]);
let test_f64 = Float64Chunked::from_slice_options(PlSmallStr::EMPTY, &[Some(1.0)]);
let test_i64 = Int64Chunked::from_slice_options(PlSmallStr::EMPTY, &[Some(1)]);
let methods = vec![
QuantileMethod::Nearest,
QuantileMethod::Lower,
QuantileMethod::Higher,
QuantileMethod::Midpoint,
QuantileMethod::Linear,
QuantileMethod::Equiprobable,
];
for method in methods {
assert_eq!(test_f32.quantile(0.5, method).unwrap(), Some(1.0));
assert_eq!(test_i32.quantile(0.5, method).unwrap(), Some(1.0));
assert_eq!(test_f64.quantile(0.5, method).unwrap(), Some(1.0));
assert_eq!(test_i64.quantile(0.5, method).unwrap(), Some(1.0));
}
}
#[test]
fn test_quantile_min_max() {
let test_f32 = Float32Chunked::from_slice_options(
PlSmallStr::EMPTY,
&[None, Some(1f32), Some(5f32), Some(1f32)],
);
let test_i32 = Int32Chunked::from_slice_options(
PlSmallStr::EMPTY,
&[None, Some(1i32), Some(5i32), Some(1i32)],
);
let test_f64 = Float64Chunked::from_slice_options(
PlSmallStr::EMPTY,
&[None, Some(1f64), Some(5f64), Some(1f64)],
);
let test_i64 = Int64Chunked::from_slice_options(
PlSmallStr::EMPTY,
&[None, Some(1i64), Some(5i64), Some(1i64)],
);
let methods = vec![
QuantileMethod::Nearest,
QuantileMethod::Lower,
QuantileMethod::Higher,
QuantileMethod::Midpoint,
QuantileMethod::Linear,
QuantileMethod::Equiprobable,
];
for method in methods {
assert_eq!(test_f32.quantile(0.0, method).unwrap(), test_f32.min());
assert_eq!(test_f32.quantile(1.0, method).unwrap(), test_f32.max());
assert_eq!(
test_i32.quantile(0.0, method).unwrap().unwrap(),
test_i32.min().unwrap() as f64
);
assert_eq!(
test_i32.quantile(1.0, method).unwrap().unwrap(),
test_i32.max().unwrap() as f64
);
assert_eq!(test_f64.quantile(0.0, method).unwrap(), test_f64.min());
assert_eq!(test_f64.quantile(1.0, method).unwrap(), test_f64.max());
assert_eq!(test_f64.quantile(0.5, method).unwrap(), test_f64.median());
assert_eq!(
test_i64.quantile(0.0, method).unwrap().unwrap(),
test_i64.min().unwrap() as f64
);
assert_eq!(
test_i64.quantile(1.0, method).unwrap().unwrap(),
test_i64.max().unwrap() as f64
);
}
}
#[test]
fn test_quantile() {
let ca = UInt32Chunked::new(
PlSmallStr::from_static("a"),
&[Some(2), Some(1), None, Some(3), Some(5), None, Some(4)],
);
assert_eq!(
ca.quantile(0.1, QuantileMethod::Nearest).unwrap(),
Some(1.0)
);
assert_eq!(
ca.quantile(0.9, QuantileMethod::Nearest).unwrap(),
Some(5.0)
);
assert_eq!(
ca.quantile(0.6, QuantileMethod::Nearest).unwrap(),
Some(3.0)
);
assert_eq!(ca.quantile(0.1, QuantileMethod::Lower).unwrap(), Some(1.0));
assert_eq!(ca.quantile(0.9, QuantileMethod::Lower).unwrap(), Some(4.0));
assert_eq!(ca.quantile(0.6, QuantileMethod::Lower).unwrap(), Some(3.0));
assert_eq!(ca.quantile(0.1, QuantileMethod::Higher).unwrap(), Some(2.0));
assert_eq!(ca.quantile(0.9, QuantileMethod::Higher).unwrap(), Some(5.0));
assert_eq!(ca.quantile(0.6, QuantileMethod::Higher).unwrap(), Some(4.0));
assert_eq!(
ca.quantile(0.1, QuantileMethod::Midpoint).unwrap(),
Some(1.5)
);
assert_eq!(
ca.quantile(0.9, QuantileMethod::Midpoint).unwrap(),
Some(4.5)
);
assert_eq!(
ca.quantile(0.6, QuantileMethod::Midpoint).unwrap(),
Some(3.5)
);
assert_eq!(ca.quantile(0.1, QuantileMethod::Linear).unwrap(), Some(1.4));
assert_eq!(ca.quantile(0.9, QuantileMethod::Linear).unwrap(), Some(4.6));
assert!(
(ca.quantile(0.6, QuantileMethod::Linear).unwrap().unwrap() - 3.4).abs() < 0.0000001
);
assert_eq!(
ca.quantile(0.15, QuantileMethod::Equiprobable).unwrap(),
Some(1.0)
);
assert_eq!(
ca.quantile(0.25, QuantileMethod::Equiprobable).unwrap(),
Some(2.0)
);
assert_eq!(
ca.quantile(0.6, QuantileMethod::Equiprobable).unwrap(),
Some(3.0)
);
let ca = UInt32Chunked::new(
PlSmallStr::from_static("a"),
&[
None,
Some(7),
Some(6),
Some(2),
Some(1),
None,
Some(3),
Some(5),
None,
Some(4),
],
);
assert_eq!(
ca.quantile(0.1, QuantileMethod::Nearest).unwrap(),
Some(2.0)
);
assert_eq!(
ca.quantile(0.9, QuantileMethod::Nearest).unwrap(),
Some(6.0)
);
assert_eq!(
ca.quantile(0.6, QuantileMethod::Nearest).unwrap(),
Some(5.0)
);
assert_eq!(ca.quantile(0.1, QuantileMethod::Lower).unwrap(), Some(1.0));
assert_eq!(ca.quantile(0.9, QuantileMethod::Lower).unwrap(), Some(6.0));
assert_eq!(ca.quantile(0.6, QuantileMethod::Lower).unwrap(), Some(4.0));
assert_eq!(ca.quantile(0.1, QuantileMethod::Higher).unwrap(), Some(2.0));
assert_eq!(ca.quantile(0.9, QuantileMethod::Higher).unwrap(), Some(7.0));
assert_eq!(ca.quantile(0.6, QuantileMethod::Higher).unwrap(), Some(5.0));
assert_eq!(
ca.quantile(0.1, QuantileMethod::Midpoint).unwrap(),
Some(1.5)
);
assert_eq!(
ca.quantile(0.9, QuantileMethod::Midpoint).unwrap(),
Some(6.5)
);
assert_eq!(
ca.quantile(0.6, QuantileMethod::Midpoint).unwrap(),
Some(4.5)
);
assert_eq!(ca.quantile(0.1, QuantileMethod::Linear).unwrap(), Some(1.6));
assert_eq!(ca.quantile(0.9, QuantileMethod::Linear).unwrap(), Some(6.4));
assert_eq!(ca.quantile(0.6, QuantileMethod::Linear).unwrap(), Some(4.6));
assert_eq!(
ca.quantile(0.14, QuantileMethod::Equiprobable).unwrap(),
Some(1.0)
);
assert_eq!(
ca.quantile(0.15, QuantileMethod::Equiprobable).unwrap(),
Some(2.0)
);
assert_eq!(
ca.quantile(0.6, QuantileMethod::Equiprobable).unwrap(),
Some(5.0)
);
}
}