1use std::any::Any;
2
3use polars_error::constants::LENGTH_LIMIT_MSG;
4
5use self::compare_inner::TotalOrdInner;
6use super::*;
7use crate::chunked_array::ops::compare_inner::{IntoTotalEqInner, NonNull, TotalEqInner};
8use crate::chunked_array::ops::sort::arg_sort_multiple::arg_sort_multiple_impl;
9use crate::prelude::*;
10use crate::series::private::{PrivateSeries, PrivateSeriesNumeric};
11use crate::series::*;
12
13impl Series {
14 pub fn new_null(name: PlSmallStr, len: usize) -> Series {
15 NullChunked::new(name, len).into_series()
16 }
17}
18
19#[derive(Clone)]
20pub struct NullChunked {
21 pub(crate) name: PlSmallStr,
22 length: IdxSize,
23 chunks: Vec<ArrayRef>,
26}
27
28impl NullChunked {
29 pub(crate) fn new(name: PlSmallStr, len: usize) -> Self {
30 Self {
31 name,
32 length: len as IdxSize,
33 chunks: vec![Box::new(arrow::array::NullArray::new(
34 ArrowDataType::Null,
35 len,
36 ))],
37 }
38 }
39
40 pub fn len(&self) -> usize {
41 self.length as usize
42 }
43
44 pub fn is_empty(&self) -> bool {
45 self.length == 0
46 }
47}
48impl PrivateSeriesNumeric for NullChunked {
49 fn bit_repr(&self) -> Option<BitRepr> {
50 Some(BitRepr::U32(UInt32Chunked::full_null(
51 self.name.clone(),
52 self.len(),
53 )))
54 }
55}
56
57impl PrivateSeries for NullChunked {
58 fn compute_len(&mut self) {
59 fn inner(chunks: &[ArrayRef]) -> usize {
60 match chunks.len() {
61 1 => chunks[0].len(),
63 _ => chunks.iter().fold(0, |acc, arr| acc + arr.len()),
64 }
65 }
66 self.length = IdxSize::try_from(inner(&self.chunks)).expect(LENGTH_LIMIT_MSG);
67 }
68 fn _field(&self) -> Cow<'_, Field> {
69 Cow::Owned(Field::new(self.name().clone(), DataType::Null))
70 }
71
72 #[allow(unused)]
73 fn _set_flags(&mut self, flags: StatisticsFlags) {}
74
75 fn _dtype(&self) -> &DataType {
76 &DataType::Null
77 }
78
79 #[cfg(feature = "zip_with")]
80 fn zip_with_same_type(&self, mask: &BooleanChunked, other: &Series) -> PolarsResult<Series> {
81 let len = match (self.len(), mask.len(), other.len()) {
82 (a, b, c) if a == b && b == c => a,
83 (1, a, b) | (a, 1, b) | (a, b, 1) if a == b => a,
84 (a, 1, 1) | (1, a, 1) | (1, 1, a) => a,
85 (_, 0, _) => 0,
86 _ => {
87 polars_bail!(ShapeMismatch: "shapes of `self`, `mask` and `other` are not suitable for `zip_with` operation")
88 },
89 };
90
91 Ok(Self::new(self.name().clone(), len).into_series())
92 }
93
94 fn into_total_eq_inner<'a>(&'a self) -> Box<dyn TotalEqInner + 'a> {
95 IntoTotalEqInner::into_total_eq_inner(self)
96 }
97 fn into_total_ord_inner<'a>(&'a self) -> Box<dyn TotalOrdInner + 'a> {
98 IntoTotalOrdInner::into_total_ord_inner(self)
99 }
100
101 fn subtract(&self, _rhs: &Series) -> PolarsResult<Series> {
102 null_arithmetic(self, _rhs, "subtract")
103 }
104
105 fn add_to(&self, _rhs: &Series) -> PolarsResult<Series> {
106 null_arithmetic(self, _rhs, "add_to")
107 }
108 fn multiply(&self, _rhs: &Series) -> PolarsResult<Series> {
109 null_arithmetic(self, _rhs, "multiply")
110 }
111 fn divide(&self, _rhs: &Series) -> PolarsResult<Series> {
112 null_arithmetic(self, _rhs, "divide")
113 }
114 fn remainder(&self, _rhs: &Series) -> PolarsResult<Series> {
115 null_arithmetic(self, _rhs, "remainder")
116 }
117
118 #[cfg(feature = "algorithm_group_by")]
119 fn group_tuples(&self, _multithreaded: bool, _sorted: bool) -> PolarsResult<GroupsType> {
120 Ok(if self.is_empty() {
121 GroupsType::default()
122 } else {
123 GroupsType::new_slice(vec![[0, self.length]], false, true)
124 })
125 }
126
127 #[cfg(feature = "algorithm_group_by")]
128 unsafe fn agg_list(&self, groups: &GroupsType) -> Series {
129 AggList::agg_list(self, groups)
130 }
131
132 fn _get_flags(&self) -> StatisticsFlags {
133 StatisticsFlags::empty()
134 }
135
136 fn vec_hash(
137 &self,
138 random_state: PlSeedableRandomStateQuality,
139 buf: &mut Vec<u64>,
140 ) -> PolarsResult<()> {
141 VecHash::vec_hash(self, random_state, buf)?;
142 Ok(())
143 }
144
145 fn vec_hash_combine(
146 &self,
147 build_hasher: PlSeedableRandomStateQuality,
148 hashes: &mut [u64],
149 ) -> PolarsResult<()> {
150 VecHash::vec_hash_combine(self, build_hasher, hashes)?;
151 Ok(())
152 }
153
154 fn arg_sort_multiple(
155 &self,
156 by: &[Column],
157 options: &SortMultipleOptions,
158 ) -> PolarsResult<IdxCa> {
159 let vals = (0..self.len())
160 .map(|i| (i as IdxSize, NonNull(())))
161 .collect();
162 arg_sort_multiple_impl(vals, by, options)
163 }
164}
165
166fn null_arithmetic(lhs: &NullChunked, rhs: &Series, op: &str) -> PolarsResult<Series> {
167 let output_len = match (lhs.len(), rhs.len()) {
168 (1, len_r) => len_r,
169 (len_l, 1) => len_l,
170 (len_l, len_r) if len_l == len_r => len_l,
171 _ => polars_bail!(ComputeError: "Cannot {:?} two series of different lengths.", op),
172 };
173 Ok(NullChunked::new(lhs.name().clone(), output_len).into_series())
174}
175
176impl SeriesTrait for NullChunked {
177 fn name(&self) -> &PlSmallStr {
178 &self.name
179 }
180
181 fn rename(&mut self, name: PlSmallStr) {
182 self.name = name
183 }
184
185 fn chunks(&self) -> &Vec<ArrayRef> {
186 &self.chunks
187 }
188 unsafe fn chunks_mut(&mut self) -> &mut Vec<ArrayRef> {
189 &mut self.chunks
190 }
191
192 fn chunk_lengths(&self) -> ChunkLenIter<'_> {
193 self.chunks.iter().map(|chunk| chunk.len())
194 }
195
196 fn take(&self, indices: &IdxCa) -> PolarsResult<Series> {
197 Ok(NullChunked::new(self.name.clone(), indices.len()).into_series())
198 }
199
200 unsafe fn take_unchecked(&self, indices: &IdxCa) -> Series {
201 NullChunked::new(self.name.clone(), indices.len()).into_series()
202 }
203
204 fn take_slice(&self, indices: &[IdxSize]) -> PolarsResult<Series> {
205 Ok(NullChunked::new(self.name.clone(), indices.len()).into_series())
206 }
207
208 unsafe fn take_slice_unchecked(&self, indices: &[IdxSize]) -> Series {
209 NullChunked::new(self.name.clone(), indices.len()).into_series()
210 }
211
212 fn deposit(&self, validity: &Bitmap) -> Series {
213 assert_eq!(validity.set_bits(), 0);
214 self.clone().into_series()
215 }
216
217 fn len(&self) -> usize {
218 self.length as usize
219 }
220
221 fn has_nulls(&self) -> bool {
222 !self.is_empty()
223 }
224
225 fn rechunk(&self) -> Series {
226 NullChunked::new(self.name.clone(), self.len()).into_series()
227 }
228
229 fn drop_nulls(&self) -> Series {
230 NullChunked::new(self.name.clone(), 0).into_series()
231 }
232
233 fn cast(&self, dtype: &DataType, _cast_options: CastOptions) -> PolarsResult<Series> {
234 Ok(Series::full_null(self.name.clone(), self.len(), dtype))
235 }
236
237 fn null_count(&self) -> usize {
238 self.len()
239 }
240
241 #[cfg(feature = "algorithm_group_by")]
242 fn unique(&self) -> PolarsResult<Series> {
243 let ca = NullChunked::new(self.name.clone(), self.n_unique().unwrap());
244 Ok(ca.into_series())
245 }
246
247 #[cfg(feature = "algorithm_group_by")]
248 fn n_unique(&self) -> PolarsResult<usize> {
249 let n = if self.is_empty() { 0 } else { 1 };
250 Ok(n)
251 }
252
253 #[cfg(feature = "algorithm_group_by")]
254 fn arg_unique(&self) -> PolarsResult<IdxCa> {
255 let idxs: Vec<IdxSize> = (0..self.n_unique().unwrap() as IdxSize).collect();
256 Ok(IdxCa::new(self.name().clone(), idxs))
257 }
258
259 fn unique_id(&self) -> PolarsResult<(IdxSize, Vec<IdxSize>)> {
260 if self.is_empty() {
261 Ok((0, Vec::new()))
262 } else {
263 Ok((1, vec![0; self.len()]))
264 }
265 }
266
267 fn new_from_index(&self, _index: usize, length: usize) -> Series {
268 NullChunked::new(self.name.clone(), length).into_series()
269 }
270
271 unsafe fn get_unchecked(&self, _index: usize) -> AnyValue<'_> {
272 AnyValue::Null
273 }
274
275 fn slice(&self, offset: i64, length: usize) -> Series {
276 let (chunks, len) = chunkops::slice(&self.chunks, offset, length, self.len());
277 NullChunked {
278 name: self.name.clone(),
279 length: len as IdxSize,
280 chunks,
281 }
282 .into_series()
283 }
284
285 fn split_at(&self, offset: i64) -> (Series, Series) {
286 let (l, r) = chunkops::split_at(self.chunks(), offset, self.len());
287 (
288 NullChunked {
289 name: self.name.clone(),
290 length: l.iter().map(|arr| arr.len() as IdxSize).sum(),
291 chunks: l,
292 }
293 .into_series(),
294 NullChunked {
295 name: self.name.clone(),
296 length: r.iter().map(|arr| arr.len() as IdxSize).sum(),
297 chunks: r,
298 }
299 .into_series(),
300 )
301 }
302
303 fn sort_with(&self, _options: SortOptions) -> PolarsResult<Series> {
304 Ok(self.clone().into_series())
305 }
306
307 fn arg_sort(&self, _options: SortOptions) -> IdxCa {
308 IdxCa::from_vec(self.name().clone(), (0..self.len() as IdxSize).collect())
309 }
310
311 fn is_null(&self) -> BooleanChunked {
312 BooleanChunked::full(self.name().clone(), true, self.len())
313 }
314
315 fn is_not_null(&self) -> BooleanChunked {
316 BooleanChunked::full(self.name().clone(), false, self.len())
317 }
318
319 fn reverse(&self) -> Series {
320 self.clone().into_series()
321 }
322
323 fn filter(&self, filter: &BooleanChunked) -> PolarsResult<Series> {
324 let len = if self.is_empty() {
325 polars_ensure!(filter.len() <= 1, ShapeMismatch: "filter's length: {} differs from that of the series: 0", filter.len());
327 0
328 } else if filter.len() == 1 {
329 return match filter.get(0) {
330 Some(true) => Ok(self.clone().into_series()),
331 None | Some(false) => Ok(NullChunked::new(self.name.clone(), 0).into_series()),
332 };
333 } else {
334 polars_ensure!(filter.len() == self.len(), ShapeMismatch: "filter's length: {} differs from that of the series: {}", filter.len(), self.len());
335 filter.sum().unwrap_or(0) as usize
336 };
337 Ok(NullChunked::new(self.name.clone(), len).into_series())
338 }
339
340 fn shift(&self, _periods: i64) -> Series {
341 self.clone().into_series()
342 }
343
344 fn sum_reduce(&self) -> PolarsResult<Scalar> {
345 Ok(Scalar::null(DataType::Null))
346 }
347
348 fn min_reduce(&self) -> PolarsResult<Scalar> {
349 Ok(Scalar::null(DataType::Null))
350 }
351
352 fn max_reduce(&self) -> PolarsResult<Scalar> {
353 Ok(Scalar::null(DataType::Null))
354 }
355
356 fn mean_reduce(&self) -> PolarsResult<Scalar> {
357 Ok(Scalar::null(DataType::Null))
358 }
359
360 fn median_reduce(&self) -> PolarsResult<Scalar> {
361 Ok(Scalar::null(DataType::Null))
362 }
363
364 fn std_reduce(&self, _ddof: u8) -> PolarsResult<Scalar> {
365 Ok(Scalar::null(DataType::Null))
366 }
367
368 fn var_reduce(&self, _ddof: u8) -> PolarsResult<Scalar> {
369 Ok(Scalar::null(DataType::Null))
370 }
371
372 fn append(&mut self, other: &Series) -> PolarsResult<()> {
373 polars_ensure!(other.dtype() == &DataType::Null, ComputeError: "expected null dtype");
374 self.length += other.len() as IdxSize;
376 self.chunks.extend(other.chunks().iter().cloned());
377 Ok(())
378 }
379 fn append_owned(&mut self, mut other: Series) -> PolarsResult<()> {
380 polars_ensure!(other.dtype() == &DataType::Null, ComputeError: "expected null dtype");
381 let other: &mut NullChunked = other._get_inner_mut().as_any_mut().downcast_mut().unwrap();
383 self.length += other.len() as IdxSize;
384 self.chunks.extend(std::mem::take(&mut other.chunks));
385 Ok(())
386 }
387
388 fn extend(&mut self, other: &Series) -> PolarsResult<()> {
389 *self = NullChunked::new(self.name.clone(), self.len() + other.len());
390 Ok(())
391 }
392
393 #[cfg(feature = "approx_unique")]
394 fn approx_n_unique(&self) -> PolarsResult<IdxSize> {
395 Ok(if self.is_empty() { 0 } else { 1 })
396 }
397
398 fn clone_inner(&self) -> Arc<dyn SeriesTrait> {
399 Arc::new(self.clone())
400 }
401
402 fn find_validity_mismatch(&self, other: &Series, idxs: &mut Vec<IdxSize>) {
403 ChunkNestingUtils::find_validity_mismatch(self, other, idxs)
404 }
405
406 fn as_any(&self) -> &dyn Any {
407 self
408 }
409
410 fn as_any_mut(&mut self) -> &mut dyn Any {
411 self
412 }
413
414 fn as_phys_any(&self) -> &dyn Any {
415 self
416 }
417
418 fn as_arc_any(self: Arc<Self>) -> Arc<dyn Any + Send + Sync> {
419 self as _
420 }
421}
422
423unsafe impl IntoSeries for NullChunked {
424 fn into_series(self) -> Series
425 where
426 Self: Sized,
427 {
428 Series(Arc::new(self))
429 }
430}