polars.LazyFrame.collect#
- LazyFrame.collect(
- *,
- type_coercion: bool = True,
- predicate_pushdown: bool = True,
- projection_pushdown: bool = True,
- simplify_expression: bool = True,
- slice_pushdown: bool = True,
- comm_subplan_elim: bool = True,
- comm_subexpr_elim: bool = True,
- cluster_with_columns: bool = True,
- no_optimization: bool = False,
- streaming: bool = False,
- background: bool = False,
- _eager: bool = False,
- **_kwargs: Any,
Materialize this LazyFrame into a DataFrame.
By default, all query optimizations are enabled. Individual optimizations may be disabled by setting the corresponding parameter to
False
.- Parameters:
- type_coercion
Do type coercion optimization.
- predicate_pushdown
Do predicate pushdown optimization.
- projection_pushdown
Do projection pushdown optimization.
- simplify_expression
Run simplify expressions optimization.
- slice_pushdown
Slice pushdown optimization.
- comm_subplan_elim
Will try to cache branching subplans that occur on self-joins or unions.
- comm_subexpr_elim
Common subexpressions will be cached and reused.
- cluster_with_columns
Combine sequential independent calls to with_columns
- no_optimization
Turn off (certain) optimizations.
- streaming
Process the query in batches to handle larger-than-memory data. If set to
False
(default), the entire query is processed in a single batch.Warning
Streaming mode is considered unstable. It may be changed at any point without it being considered a breaking change.
Note
Use
explain()
to see if Polars can process the query in streaming mode.- background
Run the query in the background and get a handle to the query. This handle can be used to fetch the result or cancel the query.
- Returns:
- DataFrame
See also
fetch
Run the query on the first
n
rows only for debugging purposes.explain
Print the query plan that is evaluated with collect.
profile
Collect the LazyFrame and time each node in the computation graph.
polars.collect_all
Collect multiple LazyFrames at the same time.
polars.Config.set_streaming_chunk_size
Set the size of streaming batches.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": ["a", "b", "a", "b", "b", "c"], ... "b": [1, 2, 3, 4, 5, 6], ... "c": [6, 5, 4, 3, 2, 1], ... } ... ) >>> lf.group_by("a").agg(pl.all().sum()).collect() shape: (3, 3) ┌─────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ a ┆ 4 ┆ 10 │ │ b ┆ 11 ┆ 10 │ │ c ┆ 6 ┆ 1 │ └─────┴─────┴─────┘
Collect in streaming mode
>>> lf.group_by("a").agg(pl.all().sum()).collect( ... streaming=True ... ) shape: (3, 3) ┌─────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ a ┆ 4 ┆ 10 │ │ b ┆ 11 ┆ 10 │ │ c ┆ 6 ┆ 1 │ └─────┴─────┴─────┘