polars.from_pandas#
- polars.from_pandas(
- data: pd.DataFrame | pd.Series[Any] | pd.Index[Any] | pd.DatetimeIndex,
- *,
- schema_overrides: SchemaDict | None = None,
- rechunk: bool = True,
- nan_to_null: bool = True,
- include_index: bool = False,
Construct a Polars DataFrame or Series from a pandas DataFrame, Series, or Index.
This operation clones data.
This requires that
pandasandpyarroware installed.- Parameters:
- data
pandas.DataFrameorpandas.Seriesorpandas.Index Data represented as a pandas DataFrame, Series, or Index.
- schema_overridesdict, default None
Support override of inferred types for one or more columns.
- rechunkbool, default True
Make sure that all data is in contiguous memory.
- nan_to_nullbool, default True
If data contains
NaNvalues PyArrow will convert theNaNtoNone- include_indexbool, default False
Load any non-default pandas indexes as columns.
Note
If the input is a pandas
SeriesorDataFrameand has a nameless index which just enumerates the rows, then it will not be included in the result, regardless of this parameter. If you want to be sure to include it, please call.reset_index()prior to calling this function.
- data
- Returns:
- DataFrame
Examples
Constructing a
DataFramefrom apandas.DataFrame:>>> import pandas as pd >>> pd_df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "b", "c"]) >>> df = pl.from_pandas(pd_df) >>> df shape: (2, 3) ┌─────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ 1 ┆ 2 ┆ 3 │ │ 4 ┆ 5 ┆ 6 │ └─────┴─────┴─────┘
Constructing a Series from a
pandas.Series:>>> import pandas as pd >>> pd_series = pd.Series([1, 2, 3], name="pd") >>> df = pl.from_pandas(pd_series) >>> df shape: (3,) Series: 'pd' [i64] [ 1 2 3 ]