polars.from_pandas#
- polars.from_pandas(
- data: pd.DataFrame | pd.Series[Any] | pd.Index[Any] | pd.DatetimeIndex,
- *,
- schema_overrides: SchemaDict | None = None,
- rechunk: bool = True,
- nan_to_null: bool = True,
- include_index: bool = False,
Construct a Polars DataFrame or Series from a pandas DataFrame, Series, or Index.
This operation clones data.
This requires that
pandas
andpyarrow
are installed.- Parameters:
- data
pandas.DataFrame
orpandas.Series
orpandas.Index
Data represented as a pandas DataFrame, Series, or Index.
- schema_overridesdict, default None
Support override of inferred types for one or more columns.
- rechunkbool, default True
Make sure that all data is in contiguous memory.
- nan_to_nullbool, default True
If data contains
NaN
values PyArrow will convert theNaN
toNone
- include_indexbool, default False
Load any non-default pandas indexes as columns.
Note
If the input is a pandas
Series
orDataFrame
and has a nameless index which just enumerates the rows, then it will not be included in the result, regardless of this parameter. If you want to be sure to include it, please call.reset_index()
prior to calling this function.
- data
- Returns:
- DataFrame
Examples
Constructing a
DataFrame
from apandas.DataFrame
:>>> import pandas as pd >>> pd_df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "b", "c"]) >>> df = pl.from_pandas(pd_df) >>> df shape: (2, 3) ┌─────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ 1 ┆ 2 ┆ 3 │ │ 4 ┆ 5 ┆ 6 │ └─────┴─────┴─────┘
Constructing a Series from a
pandas.Series
:>>> import pandas as pd >>> pd_series = pd.Series([1, 2, 3], name="pd") >>> df = pl.from_pandas(pd_series) >>> df shape: (3,) Series: 'pd' [i64] [ 1 2 3 ]