polars.corr#
- polars.corr(
- a: IntoExpr,
- b: IntoExpr,
- *,
- method: CorrelationMethod = 'pearson',
- ddof: int = 1,
- propagate_nans: bool = False,
Compute the Pearson’s or Spearman rank correlation correlation between two columns.
- Parameters:
- a
Column name or Expression.
- b
Column name or Expression.
- ddof
“Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where N represents the number of elements. By default ddof is 1.
- method{‘pearson’, ‘spearman’}
Correlation method.
- propagate_nans
If
TrueanyNaNencountered will lead toNaNin the output. Defaults toFalsewhereNaNare regarded as larger than any finite number and thus lead to the highest rank.
Examples
Pearson’s correlation:
>>> df = pl.DataFrame( ... { ... "a": [1, 8, 3], ... "b": [4, 5, 2], ... "c": ["foo", "bar", "foo"], ... } ... ) >>> df.select(pl.corr("a", "b")) shape: (1, 1) ┌──────────┐ │ a │ │ --- │ │ f64 │ ╞══════════╡ │ 0.544705 │ └──────────┘
Spearman rank correlation:
>>> df = pl.DataFrame( ... { ... "a": [1, 8, 3], ... "b": [4, 5, 2], ... "c": ["foo", "bar", "foo"], ... } ... ) >>> df.select(pl.corr("a", "b", method="spearman")) shape: (1, 1) ┌─────┐ │ a │ │ --- │ │ f64 │ ╞═════╡ │ 0.5 │ └─────┘