polars.when#
- polars.when(
- *predicates: IntoExprColumn | Iterable[IntoExprColumn] | bool,
- **constraints: Any,
Start a
when-then-otherwise
expression.Expression similar to an
if-else
statement in Python. Always initiated by apl.when(<condition>).then(<value if condition>)
., and optionally followed by chaining one or more.when(<condition>).then(<value>)
statements.Chained when-then operations should be read as Python
if, elif, ... elif
blocks, not asif, if, ... if
, i.e. the first condition that evaluates to True will be picked.If none of the conditions are
True
, an optional.otherwise(<value if all statements are false>)
can be appended at the end. If not appended, and none of the conditions areTrue
,None
will be returned.- Parameters:
- predicates
Condition(s) that must be met in order to apply the subsequent statement. Accepts one or more boolean expressions, which are implicitly combined with
&
. String input is parsed as a column name.- constraints
Apply conditions as
col_name = value
keyword arguments that are treated as equality matches, such asx = 123
. As with the predicates parameter, multiple conditions are implicitly combined using&
.
Warning
Polars computes all expressions passed to
when-then-otherwise
in parallel and filters afterwards. This means each expression must be valid on its own, regardless of the conditions in thewhen-then-otherwise
chain.Examples
Below we add a column with the value 1, where column “foo” > 2 and the value -1 where it isn’t.
>>> df = pl.DataFrame({"foo": [1, 3, 4], "bar": [3, 4, 0]}) >>> df.with_columns(pl.when(pl.col("foo") > 2).then(1).otherwise(-1).alias("val")) shape: (3, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ val │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i32 │ ╞═════╪═════╪═════╡ │ 1 ┆ 3 ┆ -1 │ │ 3 ┆ 4 ┆ 1 │ │ 4 ┆ 0 ┆ 1 │ └─────┴─────┴─────┘
Or with multiple when-then operations chained:
>>> df.with_columns( ... pl.when(pl.col("foo") > 2) ... .then(1) ... .when(pl.col("bar") > 2) ... .then(4) ... .otherwise(-1) ... .alias("val") ... ) shape: (3, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ val │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i32 │ ╞═════╪═════╪═════╡ │ 1 ┆ 3 ┆ 4 │ │ 3 ┆ 4 ┆ 1 │ │ 4 ┆ 0 ┆ 1 │ └─────┴─────┴─────┘
Note how in the example above for the second row in the DataFrame, where
foo=3
andbar=4
, the firstwhen
evaluates toTrue
, and therefore the secondwhen
, which is alsoTrue
, is not evaluated.The
otherwise
at the end is optional. If left out, any rows where none of thewhen
expressions evaluate to True, are set tonull
:>>> df.with_columns(pl.when(pl.col("foo") > 2).then(1).alias("val")) shape: (3, 3) ┌─────┬─────┬──────┐ │ foo ┆ bar ┆ val │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i32 │ ╞═════╪═════╪══════╡ │ 1 ┆ 3 ┆ null │ │ 3 ┆ 4 ┆ 1 │ │ 4 ┆ 0 ┆ 1 │ └─────┴─────┴──────┘
Pass multiple predicates, each of which must be met:
>>> df.with_columns( ... val=pl.when( ... pl.col("bar") > 0, ... pl.col("foo") % 2 != 0, ... ) ... .then(99) ... .otherwise(-1) ... ) shape: (3, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ val │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i32 │ ╞═════╪═════╪═════╡ │ 1 ┆ 3 ┆ 99 │ │ 3 ┆ 4 ┆ 99 │ │ 4 ┆ 0 ┆ -1 │ └─────┴─────┴─────┘
Pass conditions as keyword arguments:
>>> df.with_columns(val=pl.when(foo=4, bar=0).then(99).otherwise(-1)) shape: (3, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ val │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i32 │ ╞═════╪═════╪═════╡ │ 1 ┆ 3 ┆ -1 │ │ 3 ┆ 4 ┆ -1 │ │ 4 ┆ 0 ┆ 99 │ └─────┴─────┴─────┘