polars.DataFrame.pipe#
- DataFrame.pipe(
- function: Callable[Concatenate[DataFrame, P], T],
- *args: P.args,
- **kwargs: P.kwargs,
Offers a structured way to apply a sequence of user-defined functions (UDFs).
- Parameters:
- function
Callable; will receive the frame as the first parameter, followed by any given args/kwargs.
- *args
Arguments to pass to the UDF.
- **kwargs
Keyword arguments to pass to the UDF.
Notes
It is recommended to use LazyFrame when piping operations, in order to fully take advantage of query optimization and parallelization. See
df.lazy()
.Examples
>>> def cast_str_to_int(data, col_name): ... return data.with_columns(pl.col(col_name).cast(pl.Int64)) >>> df = pl.DataFrame({"a": [1, 2, 3, 4], "b": ["10", "20", "30", "40"]}) >>> df.pipe(cast_str_to_int, col_name="b") shape: (4, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 10 │ │ 2 ┆ 20 │ │ 3 ┆ 30 │ │ 4 ┆ 40 │ └─────┴─────┘
>>> df = pl.DataFrame({"b": [1, 2], "a": [3, 4]}) >>> df shape: (2, 2) ┌─────┬─────┐ │ b ┆ a │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 3 │ │ 2 ┆ 4 │ └─────┴─────┘ >>> df.pipe(lambda tdf: tdf.select(sorted(tdf.columns))) shape: (2, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 3 ┆ 1 │ │ 4 ┆ 2 │ └─────┴─────┘