polars.Expr.over#
- Expr.over(
- expr: IntoExpr | Iterable[IntoExpr],
- *more_exprs: IntoExpr,
- mapping_strategy: WindowMappingStrategy = 'group_to_rows',
Compute expressions over the given groups.
This expression is similar to performing a group by aggregation and joining the result back into the original DataFrame.
The outcome is similar to how window functions work in PostgreSQL.
- Parameters:
- expr
Column(s) to group by. Accepts expression input. Strings are parsed as column names.
- *more_exprs
Additional columns to group by, specified as positional arguments.
- mapping_strategy: {‘group_to_rows’, ‘join’, ‘explode’}
- group_to_rows
If the aggregation results in multiple values, assign them back to their position in the DataFrame. This can only be done if the group yields the same elements before aggregation as after.
- join
Join the groups as ‘List<group_dtype>’ to the row positions. warning: this can be memory intensive.
- explode
Explodes the grouped data into new rows, similar to the results of
group_by
+agg
+explode
. Sorting of the given groups is required if the groups are not part of the window operation for the operation, otherwise the result would not make sense. This operation changes the number of rows.
Examples
Pass the name of a column to compute the expression over that column.
>>> df = pl.DataFrame( ... { ... "a": ["a", "a", "b", "b", "b"], ... "b": [1, 2, 3, 5, 3], ... "c": [5, 4, 3, 2, 1], ... } ... ) >>> df.with_columns( ... pl.col("c").max().over("a").name.suffix("_max"), ... ) shape: (5, 4) ┌─────┬─────┬─────┬───────┐ │ a ┆ b ┆ c ┆ c_max │ │ --- ┆ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╪═══════╡ │ a ┆ 1 ┆ 5 ┆ 5 │ │ a ┆ 2 ┆ 4 ┆ 5 │ │ b ┆ 3 ┆ 3 ┆ 3 │ │ b ┆ 5 ┆ 2 ┆ 3 │ │ b ┆ 3 ┆ 1 ┆ 3 │ └─────┴─────┴─────┴───────┘
Expression input is supported.
>>> df.with_columns( ... pl.col("c").max().over(pl.col("b") // 2).name.suffix("_max"), ... ) shape: (5, 4) ┌─────┬─────┬─────┬───────┐ │ a ┆ b ┆ c ┆ c_max │ │ --- ┆ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╪═══════╡ │ a ┆ 1 ┆ 5 ┆ 5 │ │ a ┆ 2 ┆ 4 ┆ 4 │ │ b ┆ 3 ┆ 3 ┆ 4 │ │ b ┆ 5 ┆ 2 ┆ 2 │ │ b ┆ 3 ┆ 1 ┆ 4 │ └─────┴─────┴─────┴───────┘
Group by multiple columns by passing a list of column names or expressions.
>>> df.with_columns( ... pl.col("c").min().over(["a", "b"]).name.suffix("_min"), ... ) shape: (5, 4) ┌─────┬─────┬─────┬───────┐ │ a ┆ b ┆ c ┆ c_min │ │ --- ┆ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╪═══════╡ │ a ┆ 1 ┆ 5 ┆ 5 │ │ a ┆ 2 ┆ 4 ┆ 4 │ │ b ┆ 3 ┆ 3 ┆ 1 │ │ b ┆ 5 ┆ 2 ┆ 2 │ │ b ┆ 3 ┆ 1 ┆ 1 │ └─────┴─────┴─────┴───────┘
Or use positional arguments to group by multiple columns in the same way.
>>> df.with_columns( ... pl.col("c").min().over("a", pl.col("b") % 2).name.suffix("_min"), ... ) shape: (5, 4) ┌─────┬─────┬─────┬───────┐ │ a ┆ b ┆ c ┆ c_min │ │ --- ┆ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╪═══════╡ │ a ┆ 1 ┆ 5 ┆ 5 │ │ a ┆ 2 ┆ 4 ┆ 4 │ │ b ┆ 3 ┆ 3 ┆ 1 │ │ b ┆ 5 ┆ 2 ┆ 1 │ │ b ┆ 3 ┆ 1 ┆ 1 │ └─────┴─────┴─────┴───────┘
Aggregate values from each group using
mapping_strategy="explode"
.>>> df.select( ... pl.col("a").head(2).over("a", mapping_strategy="explode"), ... pl.col("b").sort_by("b").head(2).over("a", mapping_strategy="explode"), ... pl.col("c").sort_by("b").head(2).over("a", mapping_strategy="explode"), ... ) shape: (4, 3) ┌─────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ a ┆ 1 ┆ 5 │ │ a ┆ 2 ┆ 4 │ │ b ┆ 3 ┆ 3 │ │ b ┆ 3 ┆ 1 │ └─────┴─────┴─────┘